flash-diffusion / app.py
clementchadebec's picture
Update app.py
78249bc verified
raw
history blame
3.85 kB
import gradio as gr
import numpy as np
import random
from diffusers import PixArtAlphaPipeline, Transformer2DModel, LCMScheduler
import torch
from peft import PeftModel
device = "cuda" if torch.cuda.is_available() else "cpu"
transformer = Transformer2DModel.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS",
subfolder="transformer",
torch_dtype=torch.float16
)
transformer = PeftModel.from_pretrained(
transformer,
"jasperai/flash-pixart"
)
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = PixArtAlphaPipeline.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS",
transformer=transformer,
torch_dtype=torch.float16
)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
else:
pipe = PixArtAlphaPipeline.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS",
transformer=transformer,
torch_dtype=torch.float16
)
pipe = pipe.to(device)
pipe.text_encoder.to_bettertransformer()
pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
pipe.scheduler = LCMScheduler.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS",
subfolder="scheduler",
timestep_spacing="trailing",
)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
NUM_INFERENCE_STEPS = 4
def infer(prompt, seed, randomize_seed):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = prompt,
guidance_scale = 0,
num_inference_steps = NUM_INFERENCE_STEPS,
generator = generator
).images[0]
return image
examples = [
"The image showcases a freshly baked bread, possibly focaccia, with rosemary sprigs and red pepper flakes sprinkled on top. It's sliced and placed on a wire cooling rack, with a bowl of mixed peppercorns beside it.",
"A raccoon reading a book in a lush forest.",
"A small cactus with a happy face in the Sahara desert.",
]
css="""
#col-container {
margin: 0 auto;
max-width: 512px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# ⚡ FlashDiffusion: FlashPixart ⚡
This is an interactive demo of [Flash Diffusion](https://huggingface.co/jasperai/flash-pixart), a diffusion distillation method proposed in [ADD ARXIV]() *by Clément Chadebec, Onur Tasar and Benjamin Aubin.*
This model is a **66.5M** LoRA distilled version of [Pixart-α](https://huggingface.co/PixArt-alpha/PixArt-XL-2-1024-MS) model that is able to generate 1024x1024 images in **4 steps**.
Currently running on {power_device}.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
gr.Examples(
examples = examples,
inputs = [prompt]
)
run_button.click(
fn = infer,
inputs = [prompt, seed, randomize_seed],
outputs = [result]
)
demo.queue().launch()