File size: 2,137 Bytes
cddc4c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load model and tokenizer
model_id = "jatingocodeo/SmolLM2"

def load_model():
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        torch_dtype=torch.float16,
        device_map="auto"
    )
    return model, tokenizer

def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
    # Load model and tokenizer (caching them for subsequent calls)
    if not hasattr(generate_text, "model"):
        generate_text.model, generate_text.tokenizer = load_model()
    
    # Encode the prompt
    input_ids = generate_text.tokenizer.encode(prompt, return_tensors="pt")
    input_ids = input_ids.to(generate_text.model.device)
    
    # Generate text
    with torch.no_grad():
        output_ids = generate_text.model.generate(
            input_ids,
            max_length=max_length,
            temperature=temperature,
            top_k=top_k,
            pad_token_id=generate_text.tokenizer.pad_token_id,
            eos_token_id=generate_text.tokenizer.eos_token_id,
            do_sample=True
        )
    
    # Decode and return the generated text
    generated_text = generate_text.tokenizer.decode(output_ids[0], skip_special_tokens=True)
    return generated_text

# Create Gradio interface
iface = gr.Interface(
    fn=generate_text,
    inputs=[
        gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."),
        gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"),
    ],
    outputs=gr.Textbox(label="Generated Text"),
    title="SmolLM2 Text Generator",
    description="Generate text using the fine-tuned SmolLM2 model",
    examples=[
        ["Once upon a time", 100, 0.7, 50],
        ["The quick brown fox", 150, 0.8, 40],
        ["In a galaxy far far away", 200, 0.9, 30],
    ]
)

if __name__ == "__main__":
    iface.launch()