Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel, PretrainedConfig | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import math | |
class SmolLM2Config(PretrainedConfig): | |
model_type = "smollm2" | |
def __init__( | |
self, | |
vocab_size=49152, | |
hidden_size=576, | |
intermediate_size=1536, | |
num_hidden_layers=30, | |
num_attention_heads=9, | |
num_key_value_heads=3, | |
hidden_act="silu", | |
max_position_embeddings=2048, | |
initializer_range=0.041666666666666664, | |
rms_norm_eps=1e-5, | |
use_cache=True, | |
pad_token_id=None, | |
bos_token_id=0, | |
eos_token_id=0, | |
tie_word_embeddings=True, | |
rope_theta=10000.0, | |
**kwargs | |
): | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.num_key_value_heads = num_key_value_heads | |
self.hidden_act = hidden_act | |
self.max_position_embeddings = max_position_embeddings | |
self.initializer_range = initializer_range | |
self.rms_norm_eps = rms_norm_eps | |
self.use_cache = use_cache | |
self.rope_theta = rope_theta | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
tie_word_embeddings=tie_word_embeddings, | |
**kwargs | |
) | |
class RMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-5): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.eps = eps | |
def forward(self, x): | |
variance = x.pow(2).mean(-1, keepdim=True) | |
x = x * torch.rsqrt(variance + self.eps) | |
return self.weight * x | |
class LlamaAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.num_kv_heads = config.num_key_value_heads | |
self.head_dim = config.hidden_size // config.num_attention_heads | |
self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.head_dim, bias=False) | |
self.k_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False) | |
self.v_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False) | |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=False) | |
def forward(self, hidden_states, attention_mask=None): | |
batch_size, seq_length, _ = hidden_states.size() | |
# Project and reshape | |
q = self.q_proj(hidden_states).view(batch_size, seq_length, self.num_heads, self.head_dim) | |
k = self.k_proj(hidden_states).view(batch_size, seq_length, self.num_kv_heads, self.head_dim) | |
v = self.v_proj(hidden_states).view(batch_size, seq_length, self.num_kv_heads, self.head_dim) | |
# Repeat k/v heads if needed | |
if self.num_kv_heads < self.num_heads: | |
k = k.repeat_interleave(self.num_heads // self.num_kv_heads, dim=2) | |
v = v.repeat_interleave(self.num_heads // self.num_kv_heads, dim=2) | |
# Transpose for attention | |
q = q.transpose(1, 2) # (batch, num_heads, seq_len, head_dim) | |
k = k.transpose(1, 2) # (batch, num_heads, seq_len, head_dim) | |
v = v.transpose(1, 2) # (batch, num_heads, seq_len, head_dim) | |
# Calculate attention scores | |
scale = 1.0 / math.sqrt(self.head_dim) | |
scores = torch.matmul(q, k.transpose(-2, -1)) * scale # (batch, num_heads, seq_len, seq_len) | |
# Apply attention mask if provided | |
if attention_mask is not None: | |
# Ensure mask is broadcastable | |
if attention_mask.dim() == 2: | |
attention_mask = attention_mask.unsqueeze(1).unsqueeze(1) # (batch, 1, 1, seq_len) | |
scores = scores + attention_mask | |
# Apply softmax and dropout | |
attention_weights = F.softmax(scores, dim=-1) | |
# Apply attention to values | |
output = torch.matmul(attention_weights, v) # (batch, num_heads, seq_len, head_dim) | |
# Reshape and project back | |
output = output.transpose(1, 2).contiguous() # (batch, seq_len, num_heads, head_dim) | |
output = output.view(batch_size, seq_length, -1) # (batch, seq_len, hidden_size) | |
output = self.o_proj(output) | |
return output | |
class LlamaMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) | |
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) | |
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) | |
self.act_fn = nn.SiLU() | |
def forward(self, x): | |
gate = self.act_fn(self.gate_proj(x)) | |
up = self.up_proj(x) | |
return self.down_proj(gate * up) | |
class LlamaDecoderLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.self_attn = LlamaAttention(config) | |
self.mlp = LlamaMLP(config) | |
self.input_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps) | |
self.post_attention_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps) | |
def forward(self, hidden_states, attention_mask=None): | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
hidden_states = self.self_attn(hidden_states, attention_mask) | |
hidden_states = residual + hidden_states | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
return hidden_states | |
class SmolLM2ForCausalLM(PreTrainedModel): | |
config_class = SmolLM2Config | |
_no_split_modules = ["LlamaDecoderLayer"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) | |
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.norm = RMSNorm(config.hidden_size, config.rms_norm_eps) | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
if config.tie_word_embeddings: | |
self.lm_head.weight = self.embed_tokens.weight | |
def forward(self, input_ids, attention_mask=None, labels=None, return_dict=None, **kwargs): | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
hidden_states = self.embed_tokens(input_ids) | |
# Create causal attention mask if none provided | |
if attention_mask is None: | |
attention_mask = torch.triu( | |
torch.ones((input_ids.size(1), input_ids.size(1)), dtype=torch.bool, device=input_ids.device), | |
diagonal=1 | |
) | |
attention_mask = attention_mask.unsqueeze(0).unsqueeze(0) | |
attention_mask = attention_mask * -1e4 | |
for layer in self.layers: | |
hidden_states = layer(hidden_states, attention_mask) | |
hidden_states = self.norm(hidden_states) | |
logits = self.lm_head(hidden_states) | |
loss = None | |
if labels is not None: | |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1)) | |
if return_dict: | |
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions | |
return CausalLMOutputWithCrossAttentions( | |
loss=loss, | |
logits=logits, | |
past_key_values=None, | |
hidden_states=None, | |
attentions=None, | |
cross_attentions=None, | |
) | |
return (loss, logits) if loss is not None else logits | |
def prepare_inputs_for_generation(self, input_ids, **kwargs): | |
return { | |
"input_ids": input_ids, | |
"attention_mask": kwargs.get("attention_mask", None) | |
} | |
# Register the model architecture | |
from transformers import AutoConfig | |
AutoConfig.register("smollm2", SmolLM2Config) | |
AutoModelForCausalLM.register(SmolLM2Config, SmolLM2ForCausalLM) | |
# Cache for model and tokenizer | |
MODEL = None | |
TOKENIZER = None | |
def initialize(): | |
global MODEL, TOKENIZER | |
if MODEL is None: | |
print("Loading model and tokenizer...") | |
model_id = "jatingocodeo/SmolLM2" | |
try: | |
# Load tokenizer | |
print("\n1. Loading tokenizer...") | |
TOKENIZER = AutoTokenizer.from_pretrained(model_id) | |
print("✓ Tokenizer loaded successfully") | |
# Add special tokens if needed | |
special_tokens = { | |
'pad_token': '[PAD]', | |
'eos_token': '</s>', | |
'bos_token': '<s>' | |
} | |
num_added = TOKENIZER.add_special_tokens(special_tokens) | |
print(f"✓ Added {num_added} special tokens") | |
# Load model | |
print("\n2. Loading model...") | |
MODEL = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
low_cpu_mem_usage=True | |
) | |
# Move model to appropriate device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
MODEL = MODEL.to(device) | |
print(f"✓ Model loaded successfully and moved to {device}") | |
except Exception as e: | |
print(f"Error initializing model: {str(e)}") | |
raise | |
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50): | |
# Initialize if not already done | |
if MODEL is None: | |
initialize() | |
try: | |
# Process prompt | |
if not prompt.strip(): | |
return "Please enter a prompt." | |
if not prompt.startswith(TOKENIZER.bos_token): | |
prompt = TOKENIZER.bos_token + prompt | |
# Encode prompt | |
input_ids = TOKENIZER.encode(prompt, return_tensors="pt", truncation=True, max_length=2048) | |
input_ids = input_ids.to(MODEL.device) | |
# Generate | |
with torch.no_grad(): | |
output_ids = MODEL.generate( | |
input_ids, | |
max_length=min(max_length + len(input_ids[0]), 2048), | |
temperature=temperature, | |
top_k=top_k, | |
do_sample=True, | |
pad_token_id=TOKENIZER.pad_token_id, | |
eos_token_id=TOKENIZER.eos_token_id, | |
num_return_sequences=1 | |
) | |
# Decode and return | |
generated_text = TOKENIZER.decode(output_ids[0], skip_special_tokens=True) | |
return generated_text.strip() | |
except Exception as e: | |
return f"Error generating text: {str(e)}" | |
# Initialize on startup | |
initialize() | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=2), | |
gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"), | |
], | |
outputs=gr.Textbox(label="Generated Text", lines=5), | |
title="SmolLM2 Text Generator", | |
description="""Generate text using the fine-tuned SmolLM2 model. | |
- Max Length: Controls the length of generated text | |
- Temperature: Controls randomness (higher = more creative) | |
- Top K: Controls diversity of word choices""", | |
examples=[ | |
["Once upon a time", 100, 0.7, 50], | |
["The quick brown fox", 150, 0.8, 40], | |
["In a galaxy far far away", 200, 0.9, 30], | |
], | |
allow_flagging="never" | |
) | |
if __name__ == "__main__": | |
iface.launch() |