SmolLM2 / app.py
jatingocodeo's picture
Update app.py
eccb044 verified
raw
history blame
12.4 kB
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel, PretrainedConfig
import torch.nn as nn
import torch.nn.functional as F
import math
class SmolLM2Config(PretrainedConfig):
model_type = "smollm2"
def __init__(
self,
vocab_size=49152,
hidden_size=576,
intermediate_size=1536,
num_hidden_layers=30,
num_attention_heads=9,
num_key_value_heads=3,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.041666666666666664,
rms_norm_eps=1e-5,
use_cache=True,
pad_token_id=None,
bos_token_id=0,
eos_token_id=0,
tie_word_embeddings=True,
rope_theta=10000.0,
**kwargs
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs
)
class RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-5):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.eps = eps
def forward(self, x):
variance = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(variance + self.eps)
return self.weight * x
class LlamaAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.num_kv_heads = config.num_key_value_heads
self.head_dim = config.hidden_size // config.num_attention_heads
self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=False)
def forward(self, hidden_states, attention_mask=None):
batch_size, seq_length, _ = hidden_states.size()
# Project and reshape
q = self.q_proj(hidden_states).view(batch_size, seq_length, self.num_heads, self.head_dim)
k = self.k_proj(hidden_states).view(batch_size, seq_length, self.num_kv_heads, self.head_dim)
v = self.v_proj(hidden_states).view(batch_size, seq_length, self.num_kv_heads, self.head_dim)
# Repeat k/v heads if needed
if self.num_kv_heads < self.num_heads:
k = k.repeat_interleave(self.num_heads // self.num_kv_heads, dim=2)
v = v.repeat_interleave(self.num_heads // self.num_kv_heads, dim=2)
# Transpose for attention
q = q.transpose(1, 2) # (batch, num_heads, seq_len, head_dim)
k = k.transpose(1, 2) # (batch, num_heads, seq_len, head_dim)
v = v.transpose(1, 2) # (batch, num_heads, seq_len, head_dim)
# Calculate attention scores
scale = 1.0 / math.sqrt(self.head_dim)
scores = torch.matmul(q, k.transpose(-2, -1)) * scale # (batch, num_heads, seq_len, seq_len)
# Apply attention mask if provided
if attention_mask is not None:
# Ensure mask is broadcastable
if attention_mask.dim() == 2:
attention_mask = attention_mask.unsqueeze(1).unsqueeze(1) # (batch, 1, 1, seq_len)
scores = scores + attention_mask
# Apply softmax and dropout
attention_weights = F.softmax(scores, dim=-1)
# Apply attention to values
output = torch.matmul(attention_weights, v) # (batch, num_heads, seq_len, head_dim)
# Reshape and project back
output = output.transpose(1, 2).contiguous() # (batch, seq_len, num_heads, head_dim)
output = output.view(batch_size, seq_length, -1) # (batch, seq_len, hidden_size)
output = self.o_proj(output)
return output
class LlamaMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.act_fn = nn.SiLU()
def forward(self, x):
gate = self.act_fn(self.gate_proj(x))
up = self.up_proj(x)
return self.down_proj(gate * up)
class LlamaDecoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.self_attn = LlamaAttention(config)
self.mlp = LlamaMLP(config)
self.input_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps)
def forward(self, hidden_states, attention_mask=None):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(hidden_states, attention_mask)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class SmolLM2ForCausalLM(PreTrainedModel):
config_class = SmolLM2Config
_no_split_modules = ["LlamaDecoderLayer"]
def __init__(self, config):
super().__init__(config)
self.config = config
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, config.rms_norm_eps)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
if config.tie_word_embeddings:
self.lm_head.weight = self.embed_tokens.weight
def forward(self, input_ids, attention_mask=None, labels=None, return_dict=None, **kwargs):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = self.embed_tokens(input_ids)
# Create causal attention mask if none provided
if attention_mask is None:
attention_mask = torch.triu(
torch.ones((input_ids.size(1), input_ids.size(1)), dtype=torch.bool, device=input_ids.device),
diagonal=1
)
attention_mask = attention_mask.unsqueeze(0).unsqueeze(0)
attention_mask = attention_mask * -1e4
for layer in self.layers:
hidden_states = layer(hidden_states, attention_mask)
hidden_states = self.norm(hidden_states)
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1))
if return_dict:
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=None,
hidden_states=None,
attentions=None,
cross_attentions=None,
)
return (loss, logits) if loss is not None else logits
def prepare_inputs_for_generation(self, input_ids, **kwargs):
return {
"input_ids": input_ids,
"attention_mask": kwargs.get("attention_mask", None)
}
# Register the model architecture
from transformers import AutoConfig
AutoConfig.register("smollm2", SmolLM2Config)
AutoModelForCausalLM.register(SmolLM2Config, SmolLM2ForCausalLM)
# Cache for model and tokenizer
MODEL = None
TOKENIZER = None
def initialize():
global MODEL, TOKENIZER
if MODEL is None:
print("Loading model and tokenizer...")
model_id = "jatingocodeo/SmolLM2"
try:
# Load tokenizer
print("\n1. Loading tokenizer...")
TOKENIZER = AutoTokenizer.from_pretrained(model_id)
print("✓ Tokenizer loaded successfully")
# Add special tokens if needed
special_tokens = {
'pad_token': '[PAD]',
'eos_token': '</s>',
'bos_token': '<s>'
}
num_added = TOKENIZER.add_special_tokens(special_tokens)
print(f"✓ Added {num_added} special tokens")
# Load model
print("\n2. Loading model...")
MODEL = AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
low_cpu_mem_usage=True
)
# Move model to appropriate device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL = MODEL.to(device)
print(f"✓ Model loaded successfully and moved to {device}")
except Exception as e:
print(f"Error initializing model: {str(e)}")
raise
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
# Initialize if not already done
if MODEL is None:
initialize()
try:
# Process prompt
if not prompt.strip():
return "Please enter a prompt."
if not prompt.startswith(TOKENIZER.bos_token):
prompt = TOKENIZER.bos_token + prompt
# Encode prompt
input_ids = TOKENIZER.encode(prompt, return_tensors="pt", truncation=True, max_length=2048)
input_ids = input_ids.to(MODEL.device)
# Generate
with torch.no_grad():
output_ids = MODEL.generate(
input_ids,
max_length=min(max_length + len(input_ids[0]), 2048),
temperature=temperature,
top_k=top_k,
do_sample=True,
pad_token_id=TOKENIZER.pad_token_id,
eos_token_id=TOKENIZER.eos_token_id,
num_return_sequences=1
)
# Decode and return
generated_text = TOKENIZER.decode(output_ids[0], skip_special_tokens=True)
return generated_text.strip()
except Exception as e:
return f"Error generating text: {str(e)}"
# Initialize on startup
initialize()
# Create Gradio interface
iface = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=2),
gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"),
],
outputs=gr.Textbox(label="Generated Text", lines=5),
title="SmolLM2 Text Generator",
description="""Generate text using the fine-tuned SmolLM2 model.
- Max Length: Controls the length of generated text
- Temperature: Controls randomness (higher = more creative)
- Top K: Controls diversity of word choices""",
examples=[
["Once upon a time", 100, 0.7, 50],
["The quick brown fox", 150, 0.8, 40],
["In a galaxy far far away", 200, 0.9, 30],
],
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch()