Spaces:
Runtime error
Runtime error
File size: 12,410 Bytes
fea4095 e061e9b eccb044 e061e9b eccb044 e061e9b eccb044 e061e9b eccb044 e061e9b eccb044 e061e9b eccb044 e061e9b eccb044 e061e9b eccb044 e061e9b 6c13380 e061e9b 6c13380 e061e9b fea4095 25c11ba fea4095 25c11ba 7276d4c fea4095 25c11ba fea4095 bf2292c 25c11ba fea4095 25c11ba fea4095 fee88b4 25c11ba fea4095 25c11ba fea4095 25c11ba fee88b4 fea4095 cddc4c2 fea4095 cddc4c2 25c11ba cddc4c2 25c11ba cddc4c2 25c11ba cddc4c2 25c11ba cddc4c2 25c11ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel, PretrainedConfig
import torch.nn as nn
import torch.nn.functional as F
import math
class SmolLM2Config(PretrainedConfig):
model_type = "smollm2"
def __init__(
self,
vocab_size=49152,
hidden_size=576,
intermediate_size=1536,
num_hidden_layers=30,
num_attention_heads=9,
num_key_value_heads=3,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.041666666666666664,
rms_norm_eps=1e-5,
use_cache=True,
pad_token_id=None,
bos_token_id=0,
eos_token_id=0,
tie_word_embeddings=True,
rope_theta=10000.0,
**kwargs
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs
)
class RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-5):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.eps = eps
def forward(self, x):
variance = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(variance + self.eps)
return self.weight * x
class LlamaAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.num_kv_heads = config.num_key_value_heads
self.head_dim = config.hidden_size // config.num_attention_heads
self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=False)
def forward(self, hidden_states, attention_mask=None):
batch_size, seq_length, _ = hidden_states.size()
# Project and reshape
q = self.q_proj(hidden_states).view(batch_size, seq_length, self.num_heads, self.head_dim)
k = self.k_proj(hidden_states).view(batch_size, seq_length, self.num_kv_heads, self.head_dim)
v = self.v_proj(hidden_states).view(batch_size, seq_length, self.num_kv_heads, self.head_dim)
# Repeat k/v heads if needed
if self.num_kv_heads < self.num_heads:
k = k.repeat_interleave(self.num_heads // self.num_kv_heads, dim=2)
v = v.repeat_interleave(self.num_heads // self.num_kv_heads, dim=2)
# Transpose for attention
q = q.transpose(1, 2) # (batch, num_heads, seq_len, head_dim)
k = k.transpose(1, 2) # (batch, num_heads, seq_len, head_dim)
v = v.transpose(1, 2) # (batch, num_heads, seq_len, head_dim)
# Calculate attention scores
scale = 1.0 / math.sqrt(self.head_dim)
scores = torch.matmul(q, k.transpose(-2, -1)) * scale # (batch, num_heads, seq_len, seq_len)
# Apply attention mask if provided
if attention_mask is not None:
# Ensure mask is broadcastable
if attention_mask.dim() == 2:
attention_mask = attention_mask.unsqueeze(1).unsqueeze(1) # (batch, 1, 1, seq_len)
scores = scores + attention_mask
# Apply softmax and dropout
attention_weights = F.softmax(scores, dim=-1)
# Apply attention to values
output = torch.matmul(attention_weights, v) # (batch, num_heads, seq_len, head_dim)
# Reshape and project back
output = output.transpose(1, 2).contiguous() # (batch, seq_len, num_heads, head_dim)
output = output.view(batch_size, seq_length, -1) # (batch, seq_len, hidden_size)
output = self.o_proj(output)
return output
class LlamaMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.act_fn = nn.SiLU()
def forward(self, x):
gate = self.act_fn(self.gate_proj(x))
up = self.up_proj(x)
return self.down_proj(gate * up)
class LlamaDecoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.self_attn = LlamaAttention(config)
self.mlp = LlamaMLP(config)
self.input_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps)
def forward(self, hidden_states, attention_mask=None):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(hidden_states, attention_mask)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class SmolLM2ForCausalLM(PreTrainedModel):
config_class = SmolLM2Config
_no_split_modules = ["LlamaDecoderLayer"]
def __init__(self, config):
super().__init__(config)
self.config = config
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, config.rms_norm_eps)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
if config.tie_word_embeddings:
self.lm_head.weight = self.embed_tokens.weight
def forward(self, input_ids, attention_mask=None, labels=None, return_dict=None, **kwargs):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = self.embed_tokens(input_ids)
# Create causal attention mask if none provided
if attention_mask is None:
attention_mask = torch.triu(
torch.ones((input_ids.size(1), input_ids.size(1)), dtype=torch.bool, device=input_ids.device),
diagonal=1
)
attention_mask = attention_mask.unsqueeze(0).unsqueeze(0)
attention_mask = attention_mask * -1e4
for layer in self.layers:
hidden_states = layer(hidden_states, attention_mask)
hidden_states = self.norm(hidden_states)
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1))
if return_dict:
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=None,
hidden_states=None,
attentions=None,
cross_attentions=None,
)
return (loss, logits) if loss is not None else logits
def prepare_inputs_for_generation(self, input_ids, **kwargs):
return {
"input_ids": input_ids,
"attention_mask": kwargs.get("attention_mask", None)
}
# Register the model architecture
from transformers import AutoConfig
AutoConfig.register("smollm2", SmolLM2Config)
AutoModelForCausalLM.register(SmolLM2Config, SmolLM2ForCausalLM)
# Cache for model and tokenizer
MODEL = None
TOKENIZER = None
def initialize():
global MODEL, TOKENIZER
if MODEL is None:
print("Loading model and tokenizer...")
model_id = "jatingocodeo/SmolLM2"
try:
# Load tokenizer
print("\n1. Loading tokenizer...")
TOKENIZER = AutoTokenizer.from_pretrained(model_id)
print("✓ Tokenizer loaded successfully")
# Add special tokens if needed
special_tokens = {
'pad_token': '[PAD]',
'eos_token': '</s>',
'bos_token': '<s>'
}
num_added = TOKENIZER.add_special_tokens(special_tokens)
print(f"✓ Added {num_added} special tokens")
# Load model
print("\n2. Loading model...")
MODEL = AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
low_cpu_mem_usage=True
)
# Move model to appropriate device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL = MODEL.to(device)
print(f"✓ Model loaded successfully and moved to {device}")
except Exception as e:
print(f"Error initializing model: {str(e)}")
raise
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
# Initialize if not already done
if MODEL is None:
initialize()
try:
# Process prompt
if not prompt.strip():
return "Please enter a prompt."
if not prompt.startswith(TOKENIZER.bos_token):
prompt = TOKENIZER.bos_token + prompt
# Encode prompt
input_ids = TOKENIZER.encode(prompt, return_tensors="pt", truncation=True, max_length=2048)
input_ids = input_ids.to(MODEL.device)
# Generate
with torch.no_grad():
output_ids = MODEL.generate(
input_ids,
max_length=min(max_length + len(input_ids[0]), 2048),
temperature=temperature,
top_k=top_k,
do_sample=True,
pad_token_id=TOKENIZER.pad_token_id,
eos_token_id=TOKENIZER.eos_token_id,
num_return_sequences=1
)
# Decode and return
generated_text = TOKENIZER.decode(output_ids[0], skip_special_tokens=True)
return generated_text.strip()
except Exception as e:
return f"Error generating text: {str(e)}"
# Initialize on startup
initialize()
# Create Gradio interface
iface = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=2),
gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"),
],
outputs=gr.Textbox(label="Generated Text", lines=5),
title="SmolLM2 Text Generator",
description="""Generate text using the fine-tuned SmolLM2 model.
- Max Length: Controls the length of generated text
- Temperature: Controls randomness (higher = more creative)
- Top K: Controls diversity of word choices""",
examples=[
["Once upon a time", 100, 0.7, 50],
["The quick brown fox", 150, 0.8, 40],
["In a galaxy far far away", 200, 0.9, 30],
],
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch() |