Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,84 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Load model and tokenizer
|
6 |
model_id = "jatingocodeo/SmolLM2"
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel, PretrainedConfig
|
3 |
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import math
|
7 |
+
|
8 |
+
# Model architecture definition
|
9 |
+
class SmolLM2Config(PretrainedConfig):
|
10 |
+
model_type = "smollm2"
|
11 |
+
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
vocab_size=49152,
|
15 |
+
hidden_size=576,
|
16 |
+
intermediate_size=1536,
|
17 |
+
num_hidden_layers=30,
|
18 |
+
num_attention_heads=9,
|
19 |
+
num_key_value_heads=3,
|
20 |
+
hidden_act="silu",
|
21 |
+
max_position_embeddings=2048,
|
22 |
+
initializer_range=0.041666666666666664,
|
23 |
+
rms_norm_eps=1e-5,
|
24 |
+
use_cache=True,
|
25 |
+
pad_token_id=None,
|
26 |
+
bos_token_id=0,
|
27 |
+
eos_token_id=0,
|
28 |
+
tie_word_embeddings=True,
|
29 |
+
rope_theta=10000.0,
|
30 |
+
**kwargs
|
31 |
+
):
|
32 |
+
self.vocab_size = vocab_size
|
33 |
+
self.hidden_size = hidden_size
|
34 |
+
self.intermediate_size = intermediate_size
|
35 |
+
self.num_hidden_layers = num_hidden_layers
|
36 |
+
self.num_attention_heads = num_attention_heads
|
37 |
+
self.num_key_value_heads = num_key_value_heads
|
38 |
+
self.hidden_act = hidden_act
|
39 |
+
self.max_position_embeddings = max_position_embeddings
|
40 |
+
self.initializer_range = initializer_range
|
41 |
+
self.rms_norm_eps = rms_norm_eps
|
42 |
+
self.use_cache = use_cache
|
43 |
+
self.rope_theta = rope_theta
|
44 |
+
super().__init__(
|
45 |
+
pad_token_id=pad_token_id,
|
46 |
+
bos_token_id=bos_token_id,
|
47 |
+
eos_token_id=eos_token_id,
|
48 |
+
tie_word_embeddings=tie_word_embeddings,
|
49 |
+
**kwargs
|
50 |
+
)
|
51 |
+
|
52 |
+
class SmolLM2ForCausalLM(PreTrainedModel):
|
53 |
+
config_class = SmolLM2Config
|
54 |
+
|
55 |
+
def __init__(self, config):
|
56 |
+
super().__init__(config)
|
57 |
+
self.config = config
|
58 |
+
|
59 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
60 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
61 |
+
|
62 |
+
if config.tie_word_embeddings:
|
63 |
+
self.lm_head.weight = self.embed_tokens.weight
|
64 |
+
|
65 |
+
def forward(self, input_ids, attention_mask=None, labels=None):
|
66 |
+
hidden_states = self.embed_tokens(input_ids)
|
67 |
+
logits = self.lm_head(hidden_states)
|
68 |
+
|
69 |
+
loss = None
|
70 |
+
if labels is not None:
|
71 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1))
|
72 |
+
|
73 |
+
return logits if loss is None else (loss, logits)
|
74 |
+
|
75 |
+
def prepare_inputs_for_generation(self, input_ids, **kwargs):
|
76 |
+
return {"input_ids": input_ids}
|
77 |
+
|
78 |
+
# Register the model architecture
|
79 |
+
from transformers import AutoConfig, AutoModelForCausalLM
|
80 |
+
AutoConfig.register("smollm2", SmolLM2Config)
|
81 |
+
AutoModelForCausalLM.register(SmolLM2Config, SmolLM2ForCausalLM)
|
82 |
|
83 |
# Load model and tokenizer
|
84 |
model_id = "jatingocodeo/SmolLM2"
|