Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -21,13 +21,14 @@ class SmolLM2Config(PretrainedConfig):
|
|
21 |
num_key_value_heads=3,
|
22 |
hidden_act="silu",
|
23 |
max_position_embeddings=2048,
|
24 |
-
initializer_range=0.
|
25 |
rms_norm_eps=1e-5,
|
26 |
use_cache=True,
|
27 |
pad_token_id=None,
|
28 |
bos_token_id=0,
|
29 |
eos_token_id=0,
|
30 |
tie_word_embeddings=True,
|
|
|
31 |
**kwargs
|
32 |
):
|
33 |
self.vocab_size = vocab_size
|
@@ -41,6 +42,7 @@ class SmolLM2Config(PretrainedConfig):
|
|
41 |
self.initializer_range = initializer_range
|
42 |
self.rms_norm_eps = rms_norm_eps
|
43 |
self.use_cache = use_cache
|
|
|
44 |
super().__init__(
|
45 |
pad_token_id=pad_token_id,
|
46 |
bos_token_id=bos_token_id,
|
@@ -64,54 +66,125 @@ class RMSNorm(nn.Module):
|
|
64 |
x = x * torch.rsqrt(variance + self.eps)
|
65 |
return self.weight * x
|
66 |
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
super().__init__()
|
70 |
self.hidden_size = config.hidden_size
|
71 |
self.num_heads = config.num_attention_heads
|
|
|
72 |
self.head_dim = config.hidden_size // config.num_attention_heads
|
73 |
|
74 |
-
|
75 |
-
self.
|
76 |
-
self.
|
77 |
-
self.
|
|
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
83 |
)
|
|
|
|
|
|
|
84 |
|
85 |
-
|
86 |
-
|
|
|
|
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
hidden_states = self.input_layernorm(hidden_states)
|
92 |
|
93 |
-
#
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
v = self.v_proj(hidden_states).view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
|
98 |
|
99 |
-
#
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
102 |
|
103 |
if attention_mask is not None:
|
104 |
-
|
105 |
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
hidden_states = residual + hidden_states
|
113 |
|
114 |
-
# MLP
|
115 |
residual = hidden_states
|
116 |
hidden_states = self.post_attention_layernorm(hidden_states)
|
117 |
hidden_states = self.mlp(hidden_states)
|
@@ -125,18 +198,48 @@ class SmolLM2ForCausalLM(PreTrainedModel):
|
|
125 |
def __init__(self, config):
|
126 |
super().__init__(config)
|
127 |
self.config = config
|
|
|
128 |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
129 |
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
130 |
self.norm = RMSNorm(config.hidden_size, config.rms_norm_eps)
|
|
|
|
|
131 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
132 |
|
|
|
|
|
|
|
|
|
133 |
if config.tie_word_embeddings:
|
134 |
self.lm_head.weight = self.embed_tokens.weight
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
|
137 |
hidden_states = self.embed_tokens(input_ids)
|
138 |
|
139 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
for layer in self.layers:
|
141 |
hidden_states = layer(hidden_states, attention_mask)
|
142 |
|
@@ -155,15 +258,76 @@ class SmolLM2ForCausalLM(PreTrainedModel):
|
|
155 |
"attention_mask": kwargs.get("attention_mask", None)
|
156 |
}
|
157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
# Register the model
|
159 |
AutoModelForCausalLM.register(SmolLM2Config, SmolLM2ForCausalLM)
|
160 |
|
161 |
# Cache for model and tokenizer
|
162 |
MODEL = None
|
163 |
TOKENIZER = None
|
|
|
164 |
|
165 |
def initialize():
|
166 |
-
global MODEL, TOKENIZER
|
167 |
|
168 |
if MODEL is None:
|
169 |
print("Loading model and tokenizer...")
|
@@ -175,17 +339,24 @@ def initialize():
|
|
175 |
config_path = hf_hub_download(repo_id=model_id, filename="config.json")
|
176 |
with open(config_path, 'r') as f:
|
177 |
config_dict = json.load(f)
|
178 |
-
|
179 |
|
180 |
# Load tokenizer
|
181 |
print("Loading tokenizer...")
|
182 |
-
TOKENIZER = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
-
#
|
185 |
special_tokens = {
|
186 |
-
'
|
187 |
-
'eos_token': '
|
188 |
-
'
|
|
|
189 |
}
|
190 |
TOKENIZER.add_special_tokens(special_tokens)
|
191 |
|
@@ -194,7 +365,10 @@ def initialize():
|
|
194 |
weights_path = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin")
|
195 |
|
196 |
# Initialize model
|
197 |
-
MODEL = SmolLM2ForCausalLM(
|
|
|
|
|
|
|
198 |
|
199 |
# Load state dict
|
200 |
state_dict = torch.load(weights_path, map_location="cpu")
|
@@ -228,14 +402,23 @@ def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
|
|
228 |
prompt = TOKENIZER.bos_token + prompt
|
229 |
|
230 |
# Encode prompt
|
231 |
-
|
232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
# Generate
|
235 |
with torch.no_grad():
|
236 |
outputs = MODEL.generate(
|
237 |
input_ids,
|
238 |
-
|
|
|
239 |
temperature=max(0.1, min(temperature, 1.0)), # Clamp temperature
|
240 |
top_k=max(1, min(top_k, 100)), # Clamp top_k
|
241 |
do_sample=True if temperature > 0 else False,
|
|
|
21 |
num_key_value_heads=3,
|
22 |
hidden_act="silu",
|
23 |
max_position_embeddings=2048,
|
24 |
+
initializer_range=0.041666666666666664,
|
25 |
rms_norm_eps=1e-5,
|
26 |
use_cache=True,
|
27 |
pad_token_id=None,
|
28 |
bos_token_id=0,
|
29 |
eos_token_id=0,
|
30 |
tie_word_embeddings=True,
|
31 |
+
rope_theta=10000.0,
|
32 |
**kwargs
|
33 |
):
|
34 |
self.vocab_size = vocab_size
|
|
|
42 |
self.initializer_range = initializer_range
|
43 |
self.rms_norm_eps = rms_norm_eps
|
44 |
self.use_cache = use_cache
|
45 |
+
self.rope_theta = rope_theta
|
46 |
super().__init__(
|
47 |
pad_token_id=pad_token_id,
|
48 |
bos_token_id=bos_token_id,
|
|
|
66 |
x = x * torch.rsqrt(variance + self.eps)
|
67 |
return self.weight * x
|
68 |
|
69 |
+
def precompute_rope_frequencies(dim: int, max_position_embeddings: int, theta: float = 10000.0):
|
70 |
+
position = torch.arange(max_position_embeddings).unsqueeze(1) # [seq_len, 1]
|
71 |
+
div_term = theta ** (torch.arange(0, dim, 2).float() / dim) # [dim/2]
|
72 |
+
freqs = position / div_term # [seq_len, dim/2]
|
73 |
+
return freqs
|
74 |
+
|
75 |
+
def apply_rotary_embeddings(x: torch.Tensor, freqs: torch.Tensor):
|
76 |
+
# x shape: [batch, seq_len, heads, head_dim]
|
77 |
+
# freqs shape: [seq_len, head_dim/2]
|
78 |
+
x_rot = x.float()
|
79 |
+
|
80 |
+
# Reshape freqs to match x's dimensions
|
81 |
+
freqs = freqs.unsqueeze(0).unsqueeze(2) # [1, seq_len, 1, dim/2]
|
82 |
+
|
83 |
+
# Split channels for rotation
|
84 |
+
x1, x2 = x_rot[..., :x_rot.shape[-1]//2], x_rot[..., x_rot.shape[-1]//2:]
|
85 |
+
|
86 |
+
# Apply rotary embeddings
|
87 |
+
cos = torch.cos(freqs).to(x.device)
|
88 |
+
sin = torch.sin(freqs).to(x.device)
|
89 |
+
|
90 |
+
# Ensure broadcasting dimensions match
|
91 |
+
cos = cos.expand_as(x1)
|
92 |
+
sin = sin.expand_as(x1)
|
93 |
+
|
94 |
+
# Rotate x1 and x2
|
95 |
+
x1_rot = x1 * cos - x2 * sin
|
96 |
+
x2_rot = x2 * cos + x1 * sin
|
97 |
+
|
98 |
+
# Concatenate back
|
99 |
+
return torch.cat([x1_rot, x2_rot], dim=-1).to(x.dtype)
|
100 |
+
|
101 |
+
class LlamaAttention(nn.Module):
|
102 |
+
def __init__(self, config: SmolLM2Config):
|
103 |
super().__init__()
|
104 |
self.hidden_size = config.hidden_size
|
105 |
self.num_heads = config.num_attention_heads
|
106 |
+
self.num_kv_heads = config.num_key_value_heads
|
107 |
self.head_dim = config.hidden_size // config.num_attention_heads
|
108 |
|
109 |
+
# Adjust projections to match head dimensions
|
110 |
+
self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.head_dim, bias=False)
|
111 |
+
self.k_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
|
112 |
+
self.v_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
|
113 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=False)
|
114 |
|
115 |
+
# Initialize rotary embeddings
|
116 |
+
self.register_buffer(
|
117 |
+
"rope_freqs",
|
118 |
+
precompute_rope_frequencies(
|
119 |
+
self.head_dim, # Use full head_dim for frequencies
|
120 |
+
config.max_position_embeddings,
|
121 |
+
config.rope_theta
|
122 |
+
),
|
123 |
+
persistent=False
|
124 |
)
|
125 |
+
|
126 |
+
def forward(self, hidden_states, attention_mask=None):
|
127 |
+
batch_size, seq_length, _ = hidden_states.size()
|
128 |
|
129 |
+
# Project and reshape
|
130 |
+
q = self.q_proj(hidden_states).view(batch_size, seq_length, self.num_heads, self.head_dim)
|
131 |
+
k = self.k_proj(hidden_states).view(batch_size, seq_length, self.num_kv_heads, self.head_dim)
|
132 |
+
v = self.v_proj(hidden_states).view(batch_size, seq_length, self.num_kv_heads, self.head_dim)
|
133 |
|
134 |
+
# Apply rotary embeddings
|
135 |
+
q = apply_rotary_embeddings(q, self.rope_freqs[:seq_length])
|
136 |
+
k = apply_rotary_embeddings(k, self.rope_freqs[:seq_length])
|
|
|
137 |
|
138 |
+
# Repeat k/v heads if num_kv_heads < num_heads
|
139 |
+
if self.num_kv_heads < self.num_heads:
|
140 |
+
k = k.repeat_interleave(self.num_heads // self.num_kv_heads, dim=2)
|
141 |
+
v = v.repeat_interleave(self.num_heads // self.num_kv_heads, dim=2)
|
|
|
142 |
|
143 |
+
# Scaled dot-product attention
|
144 |
+
q = q.transpose(1, 2) # (batch, num_heads, seq_len, head_dim)
|
145 |
+
k = k.transpose(1, 2)
|
146 |
+
v = v.transpose(1, 2)
|
147 |
+
|
148 |
+
attention_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
149 |
|
150 |
if attention_mask is not None:
|
151 |
+
attention_scores = attention_scores + attention_mask
|
152 |
|
153 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
154 |
+
context = torch.matmul(attention_probs, v)
|
155 |
+
|
156 |
+
context = context.transpose(1, 2).contiguous()
|
157 |
+
context = context.view(batch_size, seq_length, -1)
|
158 |
|
159 |
+
return self.o_proj(context)
|
160 |
+
|
161 |
+
class LlamaMLP(nn.Module):
|
162 |
+
def __init__(self, config: SmolLM2Config):
|
163 |
+
super().__init__()
|
164 |
+
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
165 |
+
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
166 |
+
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
167 |
+
self.act_fn = nn.SiLU()
|
168 |
+
|
169 |
+
def forward(self, x):
|
170 |
+
gate = self.act_fn(self.gate_proj(x))
|
171 |
+
up = self.up_proj(x)
|
172 |
+
return self.down_proj(gate * up)
|
173 |
+
|
174 |
+
class LlamaDecoderLayer(nn.Module):
|
175 |
+
def __init__(self, config: SmolLM2Config):
|
176 |
+
super().__init__()
|
177 |
+
self.self_attn = LlamaAttention(config)
|
178 |
+
self.mlp = LlamaMLP(config)
|
179 |
+
self.input_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps)
|
180 |
+
self.post_attention_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps)
|
181 |
+
|
182 |
+
def forward(self, hidden_states, attention_mask=None):
|
183 |
+
residual = hidden_states
|
184 |
+
hidden_states = self.input_layernorm(hidden_states)
|
185 |
+
hidden_states = self.self_attn(hidden_states, attention_mask)
|
186 |
hidden_states = residual + hidden_states
|
187 |
|
|
|
188 |
residual = hidden_states
|
189 |
hidden_states = self.post_attention_layernorm(hidden_states)
|
190 |
hidden_states = self.mlp(hidden_states)
|
|
|
198 |
def __init__(self, config):
|
199 |
super().__init__(config)
|
200 |
self.config = config
|
201 |
+
|
202 |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
203 |
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
204 |
self.norm = RMSNorm(config.hidden_size, config.rms_norm_eps)
|
205 |
+
|
206 |
+
# Add lm_head before weight tying
|
207 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
208 |
|
209 |
+
# Initialize weights
|
210 |
+
self.apply(self._init_weights)
|
211 |
+
|
212 |
+
# Tie weights if configured
|
213 |
if config.tie_word_embeddings:
|
214 |
self.lm_head.weight = self.embed_tokens.weight
|
215 |
|
216 |
+
def _init_weights(self, module):
|
217 |
+
if isinstance(module, nn.Linear):
|
218 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
219 |
+
if module.bias is not None:
|
220 |
+
torch.nn.init.zeros_(module.bias)
|
221 |
+
elif isinstance(module, nn.Embedding):
|
222 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
223 |
+
|
224 |
def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
|
225 |
hidden_states = self.embed_tokens(input_ids)
|
226 |
|
227 |
+
# Create causal attention mask if none provided
|
228 |
+
if attention_mask is None:
|
229 |
+
# Create causal mask
|
230 |
+
seq_length = input_ids.size(1)
|
231 |
+
# [batch_size, 1, seq_length, seq_length]
|
232 |
+
causal_mask = torch.triu(
|
233 |
+
torch.ones((seq_length, seq_length), dtype=torch.bool, device=input_ids.device),
|
234 |
+
diagonal=1
|
235 |
+
).unsqueeze(0).unsqueeze(0)
|
236 |
+
attention_mask = torch.zeros(
|
237 |
+
(1, 1, seq_length, seq_length),
|
238 |
+
dtype=hidden_states.dtype,
|
239 |
+
device=hidden_states.device
|
240 |
+
)
|
241 |
+
attention_mask.masked_fill_(causal_mask, float("-inf"))
|
242 |
+
|
243 |
for layer in self.layers:
|
244 |
hidden_states = layer(hidden_states, attention_mask)
|
245 |
|
|
|
258 |
"attention_mask": kwargs.get("attention_mask", None)
|
259 |
}
|
260 |
|
261 |
+
def generate(
|
262 |
+
self,
|
263 |
+
input_ids,
|
264 |
+
max_length=100,
|
265 |
+
temperature=0.7,
|
266 |
+
top_k=50,
|
267 |
+
do_sample=True,
|
268 |
+
num_return_sequences=1,
|
269 |
+
pad_token_id=None,
|
270 |
+
eos_token_id=None,
|
271 |
+
**kwargs
|
272 |
+
):
|
273 |
+
cur_len = input_ids.shape[1]
|
274 |
+
batch_size = input_ids.shape[0]
|
275 |
+
|
276 |
+
if max_length < cur_len:
|
277 |
+
max_length = cur_len
|
278 |
+
|
279 |
+
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
|
280 |
+
|
281 |
+
while cur_len < max_length:
|
282 |
+
# Prepare model inputs
|
283 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids)
|
284 |
+
|
285 |
+
# Forward pass
|
286 |
+
with torch.no_grad():
|
287 |
+
outputs = self(**model_inputs)
|
288 |
+
next_token_logits = outputs[:, -1, :]
|
289 |
+
|
290 |
+
# Temperature scaling
|
291 |
+
if temperature != 1.0 and temperature > 0:
|
292 |
+
next_token_logits = next_token_logits / temperature
|
293 |
+
|
294 |
+
# Top-k filtering
|
295 |
+
if top_k > 0:
|
296 |
+
indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
|
297 |
+
next_token_logits[indices_to_remove] = float('-inf')
|
298 |
+
|
299 |
+
# Sample or greedy
|
300 |
+
if do_sample:
|
301 |
+
probs = F.softmax(next_token_logits, dim=-1)
|
302 |
+
next_tokens = torch.multinomial(probs, num_samples=1)
|
303 |
+
else:
|
304 |
+
next_tokens = torch.argmax(next_token_logits, dim=-1)
|
305 |
+
next_tokens = next_tokens.unsqueeze(-1)
|
306 |
+
|
307 |
+
# Append next tokens
|
308 |
+
input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
309 |
+
cur_len = input_ids.shape[1]
|
310 |
+
|
311 |
+
# Early stopping if all sequences have reached the EOS token
|
312 |
+
if eos_token_id is not None:
|
313 |
+
unfinished_sequences = unfinished_sequences.mul(
|
314 |
+
next_tokens.squeeze(-1).ne(eos_token_id).long()
|
315 |
+
)
|
316 |
+
if unfinished_sequences.max() == 0:
|
317 |
+
break
|
318 |
+
|
319 |
+
return input_ids
|
320 |
+
|
321 |
# Register the model
|
322 |
AutoModelForCausalLM.register(SmolLM2Config, SmolLM2ForCausalLM)
|
323 |
|
324 |
# Cache for model and tokenizer
|
325 |
MODEL = None
|
326 |
TOKENIZER = None
|
327 |
+
CONFIG = None
|
328 |
|
329 |
def initialize():
|
330 |
+
global MODEL, TOKENIZER, CONFIG
|
331 |
|
332 |
if MODEL is None:
|
333 |
print("Loading model and tokenizer...")
|
|
|
339 |
config_path = hf_hub_download(repo_id=model_id, filename="config.json")
|
340 |
with open(config_path, 'r') as f:
|
341 |
config_dict = json.load(f)
|
342 |
+
CONFIG = SmolLM2Config(**config_dict)
|
343 |
|
344 |
# Load tokenizer
|
345 |
print("Loading tokenizer...")
|
346 |
+
TOKENIZER = AutoTokenizer.from_pretrained(
|
347 |
+
model_id,
|
348 |
+
model_max_length=CONFIG.max_position_embeddings,
|
349 |
+
padding_side="left",
|
350 |
+
truncation_side="left",
|
351 |
+
trust_remote_code=True
|
352 |
+
)
|
353 |
|
354 |
+
# Make sure we're using the correct special tokens
|
355 |
special_tokens = {
|
356 |
+
'bos_token': '<|endoftext|>',
|
357 |
+
'eos_token': '<|endoftext|>',
|
358 |
+
'unk_token': '<|endoftext|>',
|
359 |
+
'pad_token': '<|endoftext|>' # Using endoftext as pad token since it's not specified
|
360 |
}
|
361 |
TOKENIZER.add_special_tokens(special_tokens)
|
362 |
|
|
|
365 |
weights_path = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin")
|
366 |
|
367 |
# Initialize model
|
368 |
+
MODEL = SmolLM2ForCausalLM(CONFIG)
|
369 |
+
|
370 |
+
# Resize token embeddings to match tokenizer
|
371 |
+
MODEL.resize_token_embeddings(len(TOKENIZER))
|
372 |
|
373 |
# Load state dict
|
374 |
state_dict = torch.load(weights_path, map_location="cpu")
|
|
|
402 |
prompt = TOKENIZER.bos_token + prompt
|
403 |
|
404 |
# Encode prompt
|
405 |
+
encoded = TOKENIZER.encode_plus(
|
406 |
+
prompt,
|
407 |
+
add_special_tokens=True,
|
408 |
+
return_tensors="pt",
|
409 |
+
padding=True,
|
410 |
+
truncation=True,
|
411 |
+
max_length=CONFIG.max_position_embeddings
|
412 |
+
)
|
413 |
+
input_ids = encoded["input_ids"].to(MODEL.device)
|
414 |
+
attention_mask = encoded["attention_mask"].to(MODEL.device)
|
415 |
|
416 |
# Generate
|
417 |
with torch.no_grad():
|
418 |
outputs = MODEL.generate(
|
419 |
input_ids,
|
420 |
+
attention_mask=attention_mask,
|
421 |
+
max_length=min(max_length + len(input_ids[0]), CONFIG.max_position_embeddings),
|
422 |
temperature=max(0.1, min(temperature, 1.0)), # Clamp temperature
|
423 |
top_k=max(1, min(top_k, 100)), # Clamp top_k
|
424 |
do_sample=True if temperature > 0 else False,
|