Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,137 +1,127 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
-
from peft import PeftModel
|
5 |
-
from PIL import Image
|
6 |
-
import torchvision.datasets as datasets
|
7 |
-
import numpy as np
|
8 |
-
import os
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
'base_model.model.model.layers.0': 0,
|
18 |
-
'base_model.model.model.layers.1': 0,
|
19 |
-
'base_model.model.model.layers.2': 0,
|
20 |
-
'base_model.model.model.layers.3': 0,
|
21 |
-
'base_model.model.model.layers.4': 'cpu',
|
22 |
-
'base_model.model.model.layers.5': 'cpu',
|
23 |
-
'base_model.model.model.layers.6': 'cpu',
|
24 |
-
'base_model.model.model.layers.7': 'cpu',
|
25 |
-
'base_model.model.model.layers.8': 'cpu',
|
26 |
-
'base_model.model.model.norm': 'cpu',
|
27 |
-
'base_model.model.lm_head': 0,
|
28 |
-
}
|
29 |
|
30 |
base_model = AutoModelForCausalLM.from_pretrained(
|
31 |
-
|
32 |
-
|
33 |
-
device_map=
|
34 |
-
|
35 |
-
attn_implementation='eager',
|
36 |
-
offload_folder="offload"
|
37 |
)
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
"jatingocodeo/phi-vlm",
|
42 |
-
device_map=device_map,
|
43 |
-
offload_folder="offload"
|
44 |
-
)
|
45 |
-
|
46 |
-
tokenizer = AutoTokenizer.from_pretrained("jatingocodeo/phi-vlm")
|
47 |
-
|
48 |
return model, tokenizer
|
49 |
|
50 |
-
def
|
51 |
-
#
|
52 |
-
|
53 |
-
image = image.convert("RGB")
|
54 |
-
|
55 |
-
# Resize image to match training size (32x32)
|
56 |
-
image = image.resize((32, 32))
|
57 |
-
|
58 |
-
# Convert image to tensor and normalize
|
59 |
-
image_tensor = torch.FloatTensor(np.array(image)).permute(2, 0, 1) / 255.0
|
60 |
-
|
61 |
-
# Prepare prompt with image tensor
|
62 |
-
prompt = f"""Below is an image. Please describe it in detail.
|
63 |
-
|
64 |
-
Image: {image_tensor}
|
65 |
-
Description: """
|
66 |
|
67 |
# Tokenize input
|
68 |
-
inputs = tokenizer(
|
69 |
-
prompt,
|
70 |
-
return_tensors="pt",
|
71 |
-
padding=True,
|
72 |
-
truncation=True,
|
73 |
-
max_length=128
|
74 |
-
).to(model.device)
|
75 |
|
76 |
-
# Generate
|
77 |
with torch.no_grad():
|
78 |
outputs = model.generate(
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
85 |
)
|
86 |
|
87 |
-
# Decode and return the
|
88 |
-
|
89 |
-
return generated_text.split("Description: ")[-1].strip()
|
90 |
-
|
91 |
-
# Load model
|
92 |
-
print("Loading model...")
|
93 |
-
model, tokenizer = load_model()
|
94 |
-
|
95 |
-
# Get CIFAR10 examples
|
96 |
-
def get_cifar_examples():
|
97 |
-
cifar10_test = datasets.CIFAR10(root='./data', train=False, download=True)
|
98 |
-
classes = ['airplane', 'automobile', 'bird', 'cat', 'deer',
|
99 |
-
'dog', 'frog', 'horse', 'ship', 'truck']
|
100 |
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
-
# Launch the interface
|
136 |
if __name__ == "__main__":
|
137 |
-
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from peft import PeftModel
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
# Load model and tokenizer
|
7 |
+
def load_model(model_id):
|
8 |
+
# First load the base model
|
9 |
+
base_model_id = "microsoft/phi-2"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
11 |
|
12 |
+
# Ensure tokenizer has a padding token
|
13 |
+
if tokenizer.pad_token is None:
|
14 |
+
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
base_model = AutoModelForCausalLM.from_pretrained(
|
17 |
+
base_model_id,
|
18 |
+
torch_dtype=torch.float16,
|
19 |
+
device_map="auto",
|
20 |
+
trust_remote_code=True
|
|
|
|
|
21 |
)
|
22 |
|
23 |
+
# Load and merge the LoRA adapter
|
24 |
+
model = PeftModel.from_pretrained(base_model, model_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
return model, tokenizer
|
26 |
|
27 |
+
def generate_response(instruction, model, tokenizer, max_length=200, temperature=0.7, top_p=0.9):
|
28 |
+
# Format the input text
|
29 |
+
input_text = instruction.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# Tokenize input
|
32 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
# Generate response
|
35 |
with torch.no_grad():
|
36 |
outputs = model.generate(
|
37 |
+
**inputs,
|
38 |
+
max_new_tokens=max_length,
|
39 |
+
temperature=temperature,
|
40 |
+
top_p=top_p,
|
41 |
+
num_return_sequences=1,
|
42 |
+
pad_token_id=tokenizer.eos_token_id,
|
43 |
+
do_sample=True
|
44 |
)
|
45 |
|
46 |
+
# Decode and return the response
|
47 |
+
full_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
# Extract only the response part (what comes after the instruction)
|
50 |
+
if len(input_text) < len(full_text):
|
51 |
+
response = full_text[len(input_text):].strip()
|
52 |
+
return response
|
53 |
+
return full_text.strip()
|
54 |
+
|
55 |
+
def create_demo(model_id):
|
56 |
+
# Load model and tokenizer
|
57 |
+
model, tokenizer = load_model(model_id)
|
58 |
|
59 |
+
# Define the interface
|
60 |
+
def process_input(instruction, max_length, temperature, top_p):
|
61 |
+
try:
|
62 |
+
return generate_response(
|
63 |
+
instruction,
|
64 |
+
model,
|
65 |
+
tokenizer,
|
66 |
+
max_length=max_length,
|
67 |
+
temperature=temperature,
|
68 |
+
top_p=top_p
|
69 |
+
)
|
70 |
+
except Exception as e:
|
71 |
+
return f"Error generating response: {str(e)}"
|
72 |
|
73 |
+
# Create the interface
|
74 |
+
demo = gr.Interface(
|
75 |
+
fn=process_input,
|
76 |
+
inputs=[
|
77 |
+
gr.Textbox(
|
78 |
+
label="Input Text",
|
79 |
+
placeholder="Enter your text here...",
|
80 |
+
lines=4
|
81 |
+
),
|
82 |
+
gr.Slider(
|
83 |
+
minimum=50,
|
84 |
+
maximum=500,
|
85 |
+
value=150,
|
86 |
+
step=10,
|
87 |
+
label="Maximum Length"
|
88 |
+
),
|
89 |
+
gr.Slider(
|
90 |
+
minimum=0.1,
|
91 |
+
maximum=1.0,
|
92 |
+
value=0.7,
|
93 |
+
step=0.1,
|
94 |
+
label="Temperature"
|
95 |
+
),
|
96 |
+
gr.Slider(
|
97 |
+
minimum=0.1,
|
98 |
+
maximum=1.0,
|
99 |
+
value=0.9,
|
100 |
+
step=0.1,
|
101 |
+
label="Top P"
|
102 |
+
)
|
103 |
+
],
|
104 |
+
outputs=gr.Textbox(label="Completion", lines=8),
|
105 |
+
title="Phi-2 GRPO Model Demo",
|
106 |
+
description="""This is a generative model trained using GRPO (Generative Reinforcement from Preference Optimization)
|
107 |
+
on the TLDR dataset. The model was trained to generate completions of around 150 characters.
|
108 |
+
|
109 |
+
You can adjust the generation parameters:
|
110 |
+
- **Maximum Length**: Controls the maximum length of the generated response
|
111 |
+
- **Temperature**: Higher values make the output more random, lower values make it more focused
|
112 |
+
- **Top P**: Controls the cumulative probability threshold for token sampling
|
113 |
+
""",
|
114 |
+
examples=[
|
115 |
+
["The quick brown fox jumps over the lazy dog."],
|
116 |
+
["In this tutorial, we will explore how to build a neural network for image classification."],
|
117 |
+
["The best way to prepare for an interview is to"],
|
118 |
+
["Python is a popular programming language because"]
|
119 |
+
]
|
120 |
+
)
|
121 |
+
return demo
|
122 |
|
|
|
123 |
if __name__ == "__main__":
|
124 |
+
# Use your model ID
|
125 |
+
model_id = "jatingocodeo/phi2-grpo"
|
126 |
+
demo = create_demo(model_id)
|
127 |
+
demo.launch()
|