Spaces:
Running
Running
File size: 4,206 Bytes
cbc5566 66345ab 9dfc63c 5cadf06 9dfc63c bf44ad8 871b5a8 cbc5566 38d7439 42edc6c cbc5566 5cadf06 2255b93 5cadf06 2255b93 9dfc63c 5cadf06 9dfc63c 38d7439 9dfc63c 2255b93 9dfc63c 5cadf06 610d493 5cadf06 66345ab 42edc6c 2251f70 42edc6c 2251f70 42edc6c 2251f70 42edc6c 2251f70 42edc6c 66345ab fc29cbf 95250f9 5cadf06 fc29cbf 95250f9 5cadf06 95250f9 5cadf06 95250f9 66345ab 95250f9 66345ab 2255b93 66345ab 2255b93 5cadf06 66345ab 9dfc63c fb31436 a62d15d 5cadf06 2251f70 42edc6c 2255b93 bf44ad8 5cadf06 a62d15d 42edc6c 2251f70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import gradio as gr
import json
import torch
from torch import nn
from torchvision import models, transforms
from huggingface_hub import hf_hub_download
from PIL import Image
import requests
import base64
from io import BytesIO
import os
# Define the number of classes
num_classes = 2
# Download model from Hugging Face
def download_model():
try:
model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin")
return model_path
except Exception as e:
print(f"Error downloading model: {e}")
return None
# Load the model from Hugging Face
def load_model(model_path):
try:
model = models.resnet50(pretrained=False)
model.fc = nn.Linear(model.fc.in_features, num_classes)
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
model.eval()
return model
except Exception as e:
print(f"Error loading model: {e}")
return None
# Download the model and load it
model_path = download_model()
model = load_model(model_path) if model_path else None
# Define the transformation for the input image
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def predict(image):
try:
print(f"Received image input: {image}")
# Check if the input is a PIL Image type
if isinstance(image, Image.Image):
print(f"Image is already loaded as PIL Image: {image}")
else:
# Check if the input contains a base64-encoded string or URL
if isinstance(image, dict) and image.get("data"):
image_data = image["data"]
if image_data.startswith("http"): # URL case
response = requests.get(image_data)
image = Image.open(BytesIO(response.content))
print(f"Fetched image from URL: {image}")
else: # Base64-encoded image case
image_data = base64.b64decode(image_data)
image = Image.open(BytesIO(image_data))
print(f"Decoded base64 image: {image}")
elif isinstance(image, str) and image.startswith("http"):
response = requests.get(image)
image = Image.open(BytesIO(response.content))
print(f"Fetched image from URL: {image}")
elif isinstance(image, str) and os.path.isfile(image):
image = Image.open(image)
print(f"Loaded image from local path: {image}")
else:
print("Invalid image format received.")
return json.dumps({"error": "Invalid image format received."})
# Apply transformations
image = transform(image).unsqueeze(0)
print(f"Transformed image tensor: {image.shape}")
image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
with torch.no_grad():
outputs = model(image)
predicted_class = torch.argmax(outputs, dim=1).item()
print(f"Prediction output: {outputs}, Predicted class: {predicted_class}")
if predicted_class == 0:
return json.dumps({"result": "The photo you've sent is of fall army worm with problem ID 126."})
elif predicted_class == 1:
return json.dumps({"result": "The photo you've sent is of a healthy maize image."})
else:
return json.dumps({"error": "Unexpected class prediction."})
except Exception as e:
print(f"Error processing image: {e}")
return json.dumps({"error": f"Error processing image: {e}"})
# Create the Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.JSON(label="Input JSON"),
outputs=gr.Textbox(label="Prediction Result"),
live=True,
title="Maize Anomaly Detection",
description="Upload an image of maize to detect anomalies like disease or pest infestation. You can provide local paths, URLs, or base64-encoded images."
)
# Launch the Gradio interface
iface.launch(share=True, show_error=True)
|