File size: 2,949 Bytes
2201868
 
 
 
 
 
 
 
163e73a
2201868
 
 
 
 
 
 
b77b937
 
2201868
 
 
b77b937
 
 
 
 
2201868
 
 
b77b937
2201868
 
 
 
 
 
 
 
 
b77b937
 
2eeccb6
163e73a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52fd9c2
2eeccb6
 
b77b937
2eeccb6
 
 
 
 
 
 
 
 
b77b937
2255b93
2eeccb6
5b86dff
163e73a
 
2eeccb6
 
163e73a
 
 
2eeccb6
163e73a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import gradio as gr
import json
import torch
from torch import nn
from torchvision import models, transforms
from huggingface_hub import hf_hub_download
from PIL import Image
import requests
import os
from io import BytesIO

# Define the number of classes
num_classes = 2

# Download model from Hugging Face
def download_model():
    model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin")
    return model_path

# Load the model from Hugging Face
def load_model(model_path):
    model = models.resnet50(pretrained=False)
    model.fc = nn.Linear(model.fc.in_features, num_classes)
    model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
    model.eval()
    return model

# Download the model and load it
model_path = download_model()
model = load_model(model_path)

# Define the transformation for the input image
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])

# Function to predict from image content
def predict_from_image(image):
    print(f"Processing image: {image}")
    if not isinstance(image, Image.Image):
        raise ValueError("Invalid image format received. Please provide a valid image.")

    # Apply transformations
    image_tensor = transform(image).unsqueeze(0)

    # Predict
    with torch.no_grad():
        outputs = model(image_tensor)
        predicted_class = torch.argmax(outputs, dim=1).item()

    # Interpret the result
    if predicted_class == 0:
        return {"result": "The photo is of fall army worm with problem ID 126."}
    elif predicted_class == 1:
        return {"result": "The photo is of a healthy maize image."}
    else:
        return {"error": "Unexpected class prediction."}

# Function to predict from path or URL
def predict_from_path_or_url(path_or_url):
    try:
        if path_or_url.startswith("http://") or path_or_url.startswith("https://"):
            response = requests.get(path_or_url)
            response.raise_for_status()  # Ensure the request was successful
            image = Image.open(BytesIO(response.content))
        elif os.path.isfile(path_or_url):
            image = Image.open(path_or_url)
        else:
            return {"error": "Invalid path or URL. Please provide a valid URL or local file path."}
        
        return predict_from_image(image)
    except Exception as e:
        return {"error": f"Failed to process the path or URL: {str(e)}"}

# Gradio interface
iface = gr.Interface(
    fn=predict_from_image,  # Adjust to handle images only
    inputs=[gr.Image(type="pil", label="Upload an Image")],
    outputs=gr.JSON(label="Prediction Result"),
    live=True,
    title="Maize Anomaly Detection",
    description="Upload an image to detect anomalies in maize crops.",
)

# Launch the interface
iface.launch(share=True, show_error=True)