Spaces:
Sleeping
Sleeping
File size: 3,324 Bytes
2201868 342396f 2201868 342396f 163e73a 342396f 2201868 0f694f1 342396f 2201868 342396f 163e73a 342396f 163e73a 342396f 163e73a 342396f 52fd9c2 342396f b77b937 342396f 2255b93 342396f 5b86dff 342396f 163e73a 342396f 163e73a 342396f 163e73a 342396f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import gradio as gr
import json
import torch
from torch import nn
from torchvision import models, transforms
from huggingface_hub import hf_hub_download
from PIL import Image
import requests
import os
from io import BytesIO
# Define the number of classes
num_classes = 2
# Download model from Hugging Face
def download_model():
model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin")
return model_path
# Load the model from Hugging Face
def load_model(model_path):
model = models.resnet50(pretrained=False)
model.fc = nn.Linear(model.fc.in_features, num_classes)
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
model.eval()
return model
# Download the model and load it
model_path = download_model()
model = load_model(model_path)
# Define the transformation for the input image
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
# Function to predict from image content
def predict_from_image(image):
# Ensure the image is a PIL Image
if not isinstance(image, Image.Image):
raise ValueError("Invalid image format received. Please provide a valid image.")
# Apply transformations
image_tensor = transform(image).unsqueeze(0)
# Predict
with torch.no_grad():
outputs = model(image_tensor)
predicted_class = torch.argmax(outputs, dim=1).item()
# Interpret the result
if predicted_class == 0:
return {"result": "The photo is of fall army worm with problem ID 126."}
elif predicted_class == 1:
return {"result": "The photo is of a healthy maize image."}
else:
return {"error": "Unexpected class prediction."}
# Function to handle image from URL or file path
def predict_from_url_or_path(url=None, path=None):
try:
# If URL is provided, fetch and process image
if url:
response = requests.get(url)
response.raise_for_status() # Ensure the request was successful
image = Image.open(BytesIO(response.content))
return predict_from_image(image)
# If path is provided, open the image from the local path
elif path:
if not os.path.exists(path):
return {"error": f"File not found at {path}"}
image = Image.open(path)
return predict_from_image(image)
else:
return {"error": "No valid input provided."}
except Exception as e:
return {"error": f"Failed to process the input: {str(e)}"}
# Gradio interface
iface = gr.Interface(
fn=lambda url, path: predict_from_url_or_path(url=url, path=path),
inputs=[
gr.Textbox(label="Enter Image URL", placeholder="Provide a valid image URL (optional)", optional=True),
gr.Textbox(label="Or Enter Local Image Path", placeholder="Provide the local image path (optional)", optional=True),
],
outputs=gr.JSON(label="Prediction Result"),
live=True,
title="Maize Anomaly Detection",
description="Provide either an image URL or a local file path to detect anomalies in maize crops.",
)
# Launch the interface
iface.launch(share=True, show_error=True)
|