Spaces:
Sleeping
Sleeping
File size: 4,761 Bytes
2201868 5649d80 2255b93 5649d80 66345ab 42edc6c 5649d80 42edc6c 5649d80 1f6dbae 5649d80 2251f70 1f6dbae 5649d80 1f6dbae 5649d80 1f6dbae 5649d80 fc29cbf 95250f9 5cadf06 fc29cbf 95250f9 5cadf06 95250f9 5cadf06 95250f9 5649d80 95250f9 5649d80 2255b93 5649d80 2255b93 5cadf06 5649d80 9dfc63c fb31436 a62d15d 5cadf06 5649d80 2255b93 bf44ad8 5cadf06 a62d15d 42edc6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import gradio as gr
import json
import torch
from torch import nn
from torchvision import models, transforms
from huggingface_hub import hf_hub_download
from PIL import Image
import requests
import base64
from io import BytesIO
import os
# Define the number of classes
num_classes = 2
# Download model from Hugging Face
def download_model():
try:
model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin")
return model_path
except Exception as e:
print(f"Error downloading model: {e}")
return None
# Load the model from Hugging Face
def load_model(model_path):
try:
model = models.resnet50(pretrained=False)
model.fc = nn.Linear(model.fc.in_features, num_classes)
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
model.eval()
return model
except Exception as e:
print(f"Error loading model: {e}")
return None
# Download the model and load it
model_path = download_model()
model = load_model(model_path) if model_path else None
# Define the transformation for the input image
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def predict(image):
try:
print(f"Received image input: {image}")
# Check if the input is a PIL Image type
if isinstance(image, Image.Image):
print(f"Image is already loaded as PIL Image: {image}")
else:
# Try to handle base64-encoded image
if isinstance(image, dict) and image.get("data"):
try:
image_data = base64.b64decode(image["data"])
image = Image.open(BytesIO(image_data))
print(f"Decoded base64 image: {image}")
except Exception as e:
print(f"Error decoding base64 image: {e}")
return json.dumps({"error": f"Error decoding base64 image: {e}"})
# Try to fetch the image from a URL
elif isinstance(image, str) and image.startswith("http"):
try:
response = requests.get(image)
image = Image.open(BytesIO(response.content))
print(f"Fetched image from URL: {image}")
except Exception as e:
print(f"Error fetching image from URL: {e}")
return json.dumps({"error": f"Error fetching image from URL: {e}"})
# Try to load the image from a local file path
elif isinstance(image, str) and os.path.isfile(image):
try:
image = Image.open(image)
print(f"Loaded image from local path: {image}")
except Exception as e:
print(f"Error loading image from local path: {e}")
return json.dumps({"error": f"Error loading image from local path: {e}"})
# Validate that the image is correctly loaded
if not isinstance(image, Image.Image):
print("Invalid image format received.")
return json.dumps({"error": "Invalid image format received."})
# Apply transformations
image = transform(image).unsqueeze(0)
print(f"Transformed image tensor: {image.shape}")
image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
with torch.no_grad():
outputs = model(image)
predicted_class = torch.argmax(outputs, dim=1).item()
print(f"Prediction output: {outputs}, Predicted class: {predicted_class}")
if predicted_class == 0:
return json.dumps({"result": "The photo you've sent is of fall army worm with problem ID 126."})
elif predicted_class == 1:
return json.dumps({"result": "The photo you've sent is of a healthy maize image."})
else:
return json.dumps({"error": "Unexpected class prediction."})
except Exception as e:
print(f"Error processing image: {e}")
return json.dumps({"error": f"Error processing image: {e}"})
# Create the Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil", label="Upload an image or provide a URL or local path"),
outputs=gr.Textbox(label="Prediction Result"),
live=True,
title="Maize Anomaly Detection",
description="Upload an image of maize to detect anomalies like disease or pest infestation. You can provide local paths, URLs, or base64-encoded images."
)
# Launch the Gradio interface
iface.launch(share=True, show_error=True)
|