Spaces:
Sleeping
Sleeping
File size: 3,615 Bytes
2201868 b77b937 2201868 b77b937 2201868 b77b937 2201868 b77b937 5b86dff fc29cbf 5b86dff 52fd9c2 5b86dff 5cadf06 5b86dff 52fd9c2 b77b937 5b86dff b77b937 2255b93 5b86dff 9dfc63c b77b937 fb8a03b 5b86dff b77b937 fb8a03b b77b937 5b86dff fb8a03b b77b937 fb8a03b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
import gradio as gr
import json
import torch
from torch import nn
from torchvision import models, transforms
from huggingface_hub import hf_hub_download
from PIL import Image
import requests
from io import BytesIO
# Define the number of classes
num_classes = 2
# Download model from Hugging Face
def download_model():
model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin")
return model_path
# Load the model from Hugging Face
def load_model(model_path):
model = models.resnet50(pretrained=False)
model.fc = nn.Linear(model.fc.in_features, num_classes)
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
model.eval()
return model
# Download the model and load it
model_path = download_model()
model = load_model(model_path)
# Define the transformation for the input image
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
# Function to predict from image content
def predict_from_image(image):
try:
# Ensure the image is a PIL Image
if not isinstance(image, Image.Image):
raise ValueError("Invalid image format received. Please provide a valid image.")
# Apply transformations
image_tensor = transform(image).unsqueeze(0)
# Predict
with torch.no_grad():
outputs = model(image_tensor)
predicted_class = torch.argmax(outputs, dim=1).item()
# Interpret the result
if predicted_class == 0:
return {"status": "success", "result": "Fall army worm detected (Problem ID: 126)."}
elif predicted_class == 1:
return {"status": "success", "result": "Healthy maize image detected."}
else:
return {"status": "error", "message": "Unexpected class prediction."}
except Exception as e:
return {"status": "error", "message": f"Error during prediction: {str(e)}"}
# Function to predict from URL
def predict_from_url(url):
try:
if not url.startswith(("http://", "https://")):
raise ValueError("Invalid URL format. Please provide a valid image URL.")
response = requests.get(url)
response.raise_for_status() # Ensure the request was successful
image = Image.open(BytesIO(response.content))
return predict_from_image(image)
except Exception as e:
return {"status": "error", "message": f"Failed to process the URL: {str(e)}"}
# Combined prediction function for Gradio
def combined_predict(image, url):
if image and url:
return {"status": "error", "message": "Provide either an image or a URL, not both."}
elif image:
return predict_from_image(image)
elif url:
return predict_from_url(url)
else:
return {"status": "error", "message": "No input provided. Please upload an image or provide a URL."}
# Gradio interface
iface = gr.Interface(
fn=combined_predict,
inputs=[
gr.Image(type="pil", label="Upload an Image"),
gr.Textbox(label="Or Enter an Image URL", placeholder="Provide a valid image URL"),
],
outputs=gr.JSON(label="Prediction Result"),
live=True,
title="Maize Anomaly Detection",
description="Upload an image or provide a URL to detect anomalies in maize crops.",
examples=[
[None, "https://example.com/sample-image.jpg"], # Replace with a valid example URL
]
)
# Launch the interface
iface.launch(share=True, show_error=True)
|