File size: 3,700 Bytes
2201868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b77b937
 
2201868
 
 
b77b937
 
 
 
 
2201868
 
 
b77b937
2201868
 
 
 
 
 
 
 
 
b77b937
 
5b86dff
a53a305
 
 
5b86dff
 
 
fc29cbf
5b86dff
 
52fd9c2
5b86dff
 
 
 
5cadf06
5b86dff
 
a53a305
5b86dff
a53a305
5b86dff
a53a305
 
5b86dff
a53a305
 
52fd9c2
b77b937
 
 
a53a305
b77b937
 
 
a53a305
b77b937
2255b93
a53a305
 
5b86dff
a53a305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dfc63c
a53a305
fb8a03b
a53a305
b77b937
 
 
 
 
fb8a03b
 
b77b937
fb8a03b
 
b77b937
fb8a03b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import gradio as gr
import json
import torch
from torch import nn
from torchvision import models, transforms
from huggingface_hub import hf_hub_download
from PIL import Image
import requests
from io import BytesIO

# Define the number of classes
num_classes = 2

# Download model from Hugging Face
def download_model():
    model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin")
    return model_path

# Load the model from Hugging Face
def load_model(model_path):
    model = models.resnet50(pretrained=False)
    model.fc = nn.Linear(model.fc.in_features, num_classes)
    model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
    model.eval()
    return model

# Download the model and load it
model_path = download_model()
model = load_model(model_path)

# Define the transformation for the input image
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])

# Function to predict from image content
def predict_from_image(image):
    try:
        # Log the image processing
        print(f"Processing image: {image}")
        
        # Ensure the image is a PIL Image
        if not isinstance(image, Image.Image):
            raise ValueError("Invalid image format received. Please provide a valid image.")

        # Apply transformations
        image_tensor = transform(image).unsqueeze(0)

        # Predict
        with torch.no_grad():
            outputs = model(image_tensor)
            predicted_class = torch.argmax(outputs, dim=1).item()

        # Interpret the result
        if predicted_class == 0:
            return {"result": "The photo is of fall army worm with problem ID 126."}
        elif predicted_class == 1:
            return {"result": "The photo is of a healthy maize image."}
        else:
            return {"error": "Unexpected class prediction."}

    except Exception as e:
        print(f"Error during image processing: {e}")
        return {"error": str(e)}

# Function to predict from URL
def predict_from_url(url):
    try:
        # Fetch the image from the URL
        response = requests.get(url)
        response.raise_for_status()  # Ensure the request was successful
        image = Image.open(BytesIO(response.content))
        print(f"Fetched image from URL: {url}")
        return predict_from_image(image)
    except Exception as e:
        print(f"Error during URL processing: {e}")
        return {"error": f"Failed to process the URL: {str(e)}"}

# Gradio interface with logging
def predict(image, url):
    try:
        if image:
            result = predict_from_image(image)
        elif url:
            result = predict_from_url(url)
        else:
            result = {"error": "No input provided. Please upload an image or provide a URL."}
        
        # Log the result
        event_id = id(result)  # Generate a simple event ID for logging purposes
        print(f"Event ID: {event_id}, Result: {result}")
        return result

    except Exception as e:
        print(f"Error in prediction function: {e}")
        return {"error": str(e)}

# Gradio interface setup
iface = gr.Interface(
    fn=predict,
    inputs=[
        gr.Image(type="pil", label="Upload an Image"),
        gr.Textbox(label="Or Enter an Image URL", placeholder="Provide a valid image URL"),
    ],
    outputs=gr.JSON(label="Prediction Result"),
    live=True,
    title="Maize Anomaly Detection",
    description="Upload an image or provide a URL to detect anomalies in maize crops.",
)

# Launch the interface
iface.launch(share=True, show_error=True)