File size: 3,753 Bytes
cbc5566
9dfc63c
 
 
 
 
bf44ad8
 
 
01a4ed7
cbc5566
38d7439
2255b93
cbc5566
38d7439
9dfc63c
2255b93
 
 
 
 
 
9dfc63c
38d7439
9dfc63c
2255b93
 
 
 
 
 
 
 
 
9dfc63c
38d7439
2255b93
 
9dfc63c
38d7439
9dfc63c
2255b93
 
 
 
9dfc63c
 
fc29cbf
610d493
fc29cbf
 
 
 
 
 
610d493
fc29cbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2255b93
fc29cbf
2255b93
40efeb4
2255b93
9dfc63c
fb31436
a62d15d
fc29cbf
 
 
2255b93
bf44ad8
 
a62d15d
 
ce20917
40efeb4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import gradio as gr
import torch
from torch import nn
from torchvision import models, transforms
from huggingface_hub import hf_hub_download
from PIL import Image
import requests
import base64
from io import BytesIO
import os

# Define the number of classes
num_classes = 2  # Update with the actual number of classes in your dataset

# Download model from Hugging Face
def download_model():
    try:
        model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin")
        return model_path
    except Exception as e:
        print(f"Error downloading model: {e}")
        return None

# Load the model from Hugging Face
def load_model(model_path):
    try:
        model = models.resnet50(pretrained=False)
        model.fc = nn.Linear(model.fc.in_features, num_classes)
        model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
        model.eval()
        return model
    except Exception as e:
        print(f"Error loading model: {e}")
        return None

# Download the model and load it
model_path = download_model()
model = load_model(model_path) if model_path else None

# Define the transformation for the input image
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])

def process_image(image_input):
    try:
        # Process the image input (URL, local file, or base64)
        if isinstance(image_input, dict):
            # Check if the input contains a URL
            if image_input.get("url"):
                image_url = image_input["url"]
                response = requests.get(image_url)
                image = Image.open(BytesIO(response.content))
            # Check if the input contains a file path
            elif image_input.get("path"):
                image_path = image_input["path"]
                image = Image.open(image_path)
            # Handle base64 if it's included
            elif image_input.get("data"):
                image_data = base64.b64decode(image_input["data"])
                image = Image.open(BytesIO(image_data))
            else:
                return "Invalid input data format. Please provide a URL or path."

            # Apply transformations
            image = transform(image).unsqueeze(0)
            image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))

            # Make the prediction
            with torch.no_grad():
                outputs = model(image)
                predicted_class = torch.argmax(outputs, dim=1).item()

            # Return prediction result
            if predicted_class == 0:
                return "The photo you've sent is of fall army worm with problem ID 126."
            elif predicted_class == 1:
                return "The photo you've sent is of a healthy maize image."
            else:
                return "Unexpected class prediction."
        else:
            return "Invalid input. Please provide a dictionary with 'url' or 'path'."
    except Exception as e:
        print(f"Error processing image: {e}")
        return f"Error processing image: {e}"

# Create the Gradio interface
iface = gr.Interface(
    fn=process_image,
    inputs=gr.JSON(label="Upload an image (URL or Local Path)"),  # Input: JSON to handle URL or path
    outputs=gr.Textbox(label="Prediction Result"),  # Output: Prediction result
    live=True,
    title="Maize Anomaly Detection",
    description="Upload an image of maize to detect anomalies like disease or pest infestation. You can provide local paths, URLs, or base64-encoded images."
)

# Launch the Gradio interface
iface.launch(share=True, show_error=True)