jays009's picture
Update app.py
2ba8106 verified
raw
history blame
4.32 kB
import gradio as gr
import json
import torch
from torch import nn
from torchvision import models, transforms
from huggingface_hub import hf_hub_download
from PIL import Image
import requests
from io import BytesIO
# Define the number of classes
num_classes = 2
# Download model from Hugging Face
def download_model():
try:
model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin")
return model_path
except Exception as e:
print(f"Error downloading model: {e}")
return None
# Load the model from Hugging Face
def load_model(model_path):
try:
model = models.resnet50(pretrained=False)
model.fc = nn.Linear(model.fc.in_features, num_classes)
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
model.eval()
return model
except Exception as e:
print(f"Error loading model: {e}")
return None
# Download the model and load it
model_path = download_model()
model = load_model(model_path) if model_path else None
# Define the transformation for the input image
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def predict(input_data):
try:
print(f"Input data received: {input_data}, Type: {type(input_data)}")
# Check if the input is a URL or image
if isinstance(input_data, str): # If it's a string, assume it's a URL
try:
response = requests.get(input_data)
response.raise_for_status() # Raise error for HTTP issues
img = Image.open(BytesIO(response.content))
print("Image fetched successfully from URL.")
except Exception as e:
print(f"Error fetching image from URL: {e}")
return json.dumps({"error": f"Failed to fetch image from URL: {e}"})
else: # If it's not a string, assume it's an image file
img = input_data
# Validate the image
if not isinstance(img, Image.Image):
print("Invalid image format received.")
return json.dumps({"error": "Invalid image format received. Please provide a valid image."})
else:
print(f"Image successfully loaded: {img}")
# Apply transformations to the image
img = transform(img).unsqueeze(0)
print(f"Transformed image tensor shape: {img.shape}")
# Ensure model is loaded
if model is None:
return json.dumps({"error": "Model not loaded. Ensure the model file is available and correctly loaded."})
# Move the image to the correct device
img = img.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
# Make predictions
with torch.no_grad():
outputs = model(img)
predicted_class = torch.argmax(outputs, dim=1).item()
print(f"Model prediction outputs: {outputs}, Predicted class: {predicted_class}")
# Return the result based on the predicted class
if predicted_class == 0:
return json.dumps({"result": "The photo you've sent is of fall army worm with problem ID 126."})
elif predicted_class == 1:
return json.dumps({"result": "The photo you've sent is of a healthy maize image."})
else:
return json.dumps({"error": "Unexpected class prediction."})
except Exception as e:
print(f"Error processing image: {e}")
return json.dumps({"error": f"Error processing image: {e}"})
# Create the Gradio interface with both local file upload and URL input
iface = gr.Interface(
fn=predict,
inputs=[gr.Image(type="pil", label="Upload an image or provide a local path"),
gr.Textbox(label="Or enter image URL (if available)", placeholder="Enter a URL for the image")],
outputs=gr.Textbox(label="Prediction Result"),
live=True,
title="Maize Anomaly Detection",
description="Upload an image of maize to detect anomalies like disease or pest infestation. You can provide local paths, URLs, or base64-encoded images."
)
# Launch the Gradio interface
iface.launch(share=True, show_error=True)