Spaces:
Sleeping
Sleeping
import gradio as gr | |
import json | |
import torch | |
from torch import nn | |
from torchvision import models, transforms | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
import requests | |
from io import BytesIO | |
# Define the number of classes | |
num_classes = 2 | |
# Download model from Hugging Face | |
def download_model(): | |
try: | |
model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin") | |
return model_path | |
except Exception as e: | |
print(f"Error downloading model: {e}") | |
return None | |
# Load the model from Hugging Face | |
def load_model(model_path): | |
try: | |
model = models.resnet50(pretrained=False) | |
model.fc = nn.Linear(model.fc.in_features, num_classes) | |
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) | |
model.eval() | |
return model | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
return None | |
# Download the model and load it | |
model_path = download_model() | |
model = load_model(model_path) if model_path else None | |
# Define the transformation for the input image | |
transform = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
]) | |
def predict(input_data): | |
try: | |
print(f"Input data received: {input_data}, Type: {type(input_data)}") | |
# Check if the input is a URL or image | |
if isinstance(input_data, str): # If it's a string, assume it's a URL | |
try: | |
response = requests.get(input_data) | |
response.raise_for_status() # Raise error for HTTP issues | |
img = Image.open(BytesIO(response.content)) | |
print("Image fetched successfully from URL.") | |
except Exception as e: | |
print(f"Error fetching image from URL: {e}") | |
return json.dumps({"error": f"Failed to fetch image from URL: {e}"}) | |
else: # If it's not a string, assume it's an image file | |
img = input_data | |
# Validate the image | |
if not isinstance(img, Image.Image): | |
print("Invalid image format received.") | |
return json.dumps({"error": "Invalid image format received. Please provide a valid image."}) | |
else: | |
print(f"Image successfully loaded: {img}") | |
# Apply transformations to the image | |
img = transform(img).unsqueeze(0) | |
print(f"Transformed image tensor shape: {img.shape}") | |
# Ensure model is loaded | |
if model is None: | |
return json.dumps({"error": "Model not loaded. Ensure the model file is available and correctly loaded."}) | |
# Move the image to the correct device | |
img = img.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) | |
# Make predictions | |
with torch.no_grad(): | |
outputs = model(img) | |
predicted_class = torch.argmax(outputs, dim=1).item() | |
print(f"Model prediction outputs: {outputs}, Predicted class: {predicted_class}") | |
# Return the result based on the predicted class | |
if predicted_class == 0: | |
return json.dumps({"result": "The photo you've sent is of fall army worm with problem ID 126."}) | |
elif predicted_class == 1: | |
return json.dumps({"result": "The photo you've sent is of a healthy maize image."}) | |
else: | |
return json.dumps({"error": "Unexpected class prediction."}) | |
except Exception as e: | |
print(f"Error processing image: {e}") | |
return json.dumps({"error": f"Error processing image: {e}"}) | |
# Create the Gradio interface with both local file upload and URL input | |
iface = gr.Interface( | |
fn=predict, | |
inputs=[gr.Image(type="pil", label="Upload an image or provide a local path"), | |
gr.Textbox(label="Or enter image URL (if available)", placeholder="Enter a URL for the image")], | |
outputs=gr.Textbox(label="Prediction Result"), | |
live=True, | |
title="Maize Anomaly Detection", | |
description="Upload an image of maize to detect anomalies like disease or pest infestation. You can provide local paths, URLs, or base64-encoded images." | |
) | |
# Launch the Gradio interface | |
iface.launch(share=True, show_error=True) | |