Spaces:
Sleeping
Sleeping
import gradio as gr | |
import json | |
import torch | |
from torch import nn | |
from torchvision import models, transforms | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
import requests | |
import os | |
from io import BytesIO | |
# Define the number of classes | |
num_classes = 2 | |
# Download model from Hugging Face | |
def download_model(): | |
model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin") | |
return model_path | |
# Load the model from Hugging Face | |
def load_model(model_path): | |
model = models.resnet50(pretrained=False) | |
model.fc = nn.Linear(model.fc.in_features, num_classes) | |
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) | |
model.eval() | |
return model | |
# Download the model and load it | |
model_path = download_model() | |
model = load_model(model_path) | |
# Define the transformation for the input image | |
transform = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
]) | |
# Function to predict from image content | |
def predict_from_image(image): | |
print(f"Processing image: {image}") | |
if not isinstance(image, Image.Image): | |
raise ValueError("Invalid image format received. Please provide a valid image.") | |
# Apply transformations | |
image_tensor = transform(image).unsqueeze(0) | |
# Predict | |
with torch.no_grad(): | |
outputs = model(image_tensor) | |
predicted_class = torch.argmax(outputs, dim=1).item() | |
# Interpret the result | |
if predicted_class == 0: | |
return {"result": "The photo is of fall army worm with problem ID 126."} | |
elif predicted_class == 1: | |
return {"result": "The photo is of a healthy maize image."} | |
else: | |
return {"error": "Unexpected class prediction."} | |
# Function to predict from path or URL | |
def predict_from_path_or_url(path_or_url): | |
try: | |
if path_or_url.startswith("http://") or path_or_url.startswith("https://"): | |
response = requests.get(path_or_url) | |
response.raise_for_status() # Ensure the request was successful | |
image = Image.open(BytesIO(response.content)) | |
elif os.path.isfile(path_or_url): | |
image = Image.open(path_or_url) | |
else: | |
return {"error": "Invalid path or URL. Please provide a valid URL or local file path."} | |
return predict_from_image(image) | |
except Exception as e: | |
return {"error": f"Failed to process the path or URL: {str(e)}"} | |
# Gradio interface | |
iface = gr.Interface( | |
fn=predict_from_image, # Adjust to handle images only | |
inputs=[gr.Image(type="pil", label="Upload an Image")], | |
outputs=gr.JSON(label="Prediction Result"), | |
live=True, | |
title="Maize Anomaly Detection", | |
description="Upload an image to detect anomalies in maize crops.", | |
) | |
# Launch the interface | |
iface.launch(share=True, show_error=True) | |