Spaces:
Sleeping
Sleeping
import gradio as gr | |
import json | |
import torch | |
from torch import nn | |
from torchvision import models, transforms | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
import requests | |
import os | |
from io import BytesIO | |
import logging | |
# Set up basic logging | |
logging.basicConfig(level=logging.INFO) | |
# Define the number of classes | |
num_classes = 2 | |
# Download model from Hugging Face | |
def download_model(): | |
model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin") | |
return model_path | |
# Load the model from Hugging Face | |
def load_model(model_path): | |
model = models.resnet50(pretrained=False) | |
model.fc = nn.Linear(model.fc.in_features, num_classes) | |
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) | |
model.eval() | |
return model | |
# Download the model and load it | |
model_path = download_model() | |
model = load_model(model_path) | |
# Define the transformation for the input image | |
transform = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
]) | |
# Global variable to store the file path | |
file_path = None | |
# Function to predict from image content | |
def predict_from_image(image): | |
# Ensure the image is a PIL Image | |
if not isinstance(image, Image.Image): | |
raise ValueError("Invalid image format received. Please provide a valid image.") | |
# Apply transformations | |
image_tensor = transform(image).unsqueeze(0) | |
# Predict | |
with torch.no_grad(): | |
outputs = model(image_tensor) | |
predicted_class = torch.argmax(outputs, dim=1).item() | |
# Interpret the result | |
if predicted_class == 0: | |
return {"result": "The photo is of fall army worm with problem ID 126."} | |
elif predicted_class == 1: | |
return {"result": "The photo is of a healthy maize image."} | |
else: | |
return {"error": "Unexpected class prediction."} | |
# Function to handle the file path sent via POST request | |
def process_file_path(file_path_input): | |
global file_path | |
file_path = file_path_input # Store the file path | |
logging.info(f"Received file path: {file_path}") | |
if not os.path.exists(file_path): | |
logging.error(f"File not found at {file_path}") | |
return {"error": f"File not found at {file_path}"} | |
image = Image.open(file_path) | |
logging.info(f"Processing image from path: {file_path}") | |
return predict_from_image(image) | |
# Function to fetch the result (for the GET request) | |
def fetch_result(): | |
if file_path: | |
image = Image.open(file_path) | |
logging.info(f"Making prediction for image at path: {file_path}") | |
return predict_from_image(image) | |
else: | |
logging.warning("No file path available. Please send a POST request with a file path first.") | |
return {"error": "No file path available. Please send a POST request with a file path first."} | |
# Gradio interface | |
iface = gr.Interface( | |
fn=process_file_path, | |
inputs=[ | |
gr.Textbox(label="Enter Local Image Path", placeholder="Provide the local image path"), | |
], | |
outputs=gr.JSON(label="Prediction Result"), | |
live=False, | |
title="Maize Anomaly Detection", | |
description="Provide a local file path via POST request to process an image.", | |
) | |
# Launch the interface | |
iface.launch(share=True, show_error=True) | |