jays009's picture
Update app.py
fc29cbf verified
raw
history blame
3.75 kB
import gradio as gr
import torch
from torch import nn
from torchvision import models, transforms
from huggingface_hub import hf_hub_download
from PIL import Image
import requests
import base64
from io import BytesIO
import os
# Define the number of classes
num_classes = 2 # Update with the actual number of classes in your dataset
# Download model from Hugging Face
def download_model():
try:
model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin")
return model_path
except Exception as e:
print(f"Error downloading model: {e}")
return None
# Load the model from Hugging Face
def load_model(model_path):
try:
model = models.resnet50(pretrained=False)
model.fc = nn.Linear(model.fc.in_features, num_classes)
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
model.eval()
return model
except Exception as e:
print(f"Error loading model: {e}")
return None
# Download the model and load it
model_path = download_model()
model = load_model(model_path) if model_path else None
# Define the transformation for the input image
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def process_image(image_input):
try:
# Process the image input (URL, local file, or base64)
if isinstance(image_input, dict):
# Check if the input contains a URL
if image_input.get("url"):
image_url = image_input["url"]
response = requests.get(image_url)
image = Image.open(BytesIO(response.content))
# Check if the input contains a file path
elif image_input.get("path"):
image_path = image_input["path"]
image = Image.open(image_path)
# Handle base64 if it's included
elif image_input.get("data"):
image_data = base64.b64decode(image_input["data"])
image = Image.open(BytesIO(image_data))
else:
return "Invalid input data format. Please provide a URL or path."
# Apply transformations
image = transform(image).unsqueeze(0)
image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
# Make the prediction
with torch.no_grad():
outputs = model(image)
predicted_class = torch.argmax(outputs, dim=1).item()
# Return prediction result
if predicted_class == 0:
return "The photo you've sent is of fall army worm with problem ID 126."
elif predicted_class == 1:
return "The photo you've sent is of a healthy maize image."
else:
return "Unexpected class prediction."
else:
return "Invalid input. Please provide a dictionary with 'url' or 'path'."
except Exception as e:
print(f"Error processing image: {e}")
return f"Error processing image: {e}"
# Create the Gradio interface
iface = gr.Interface(
fn=process_image,
inputs=gr.JSON(label="Upload an image (URL or Local Path)"), # Input: JSON to handle URL or path
outputs=gr.Textbox(label="Prediction Result"), # Output: Prediction result
live=True,
title="Maize Anomaly Detection",
description="Upload an image of maize to detect anomalies like disease or pest infestation. You can provide local paths, URLs, or base64-encoded images."
)
# Launch the Gradio interface
iface.launch(share=True, show_error=True)