File size: 25,491 Bytes
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d78dede
 
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
d78dede
 
 
 
 
 
66c6879
d78dede
 
 
 
 
66c6879
d78dede
66c6879
91fb4ef
66c6879
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d78dede
91fb4ef
 
 
d78dede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d78dede
 
91fb4ef
d78dede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d78dede
 
91fb4ef
d78dede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
import json
import os
import random
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple

import numpy as np
import pandas as pd
import torch
import torchvision.transforms as TT
import torchvision.transforms.functional as TTF
from accelerate.logging import get_logger
from torch.utils.data import Dataset, Sampler
from torchvision import transforms
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize

import gc
import time
import resource

# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
import decord  # isort:skip

decord.bridge.set_bridge("torch")

from .constants import (  # noqa
    COMMON_LLM_START_PHRASES,
    PRECOMPUTED_CONDITIONS_DIR_NAME,
    PRECOMPUTED_DIR_NAME,
    PRECOMPUTED_LATENTS_DIR_NAME,
)

# Decord is causing us some issues!
# Let's try to increase file descriptor limits to avoid this error:
#
#     decord._ffi.base.DECORDError: Resource temporarily unavailable
try:
    soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
    print(f"Current file descriptor limits: soft={soft}, hard={hard}")
    
    # Try to increase to hard limit if possible
    if soft < hard:
        resource.setrlimit(resource.RLIMIT_NOFILE, (hard, hard))
        new_soft, new_hard = resource.getrlimit(resource.RLIMIT_NOFILE)
        print(f"Updated file descriptor limits: soft={new_soft}, hard={new_hard}")
except Exception as e:
    print(f"Could not check or update file descriptor limits: {e}")

logger = get_logger(__name__)

# TODO(aryan): This needs a refactor with separation of concerns.
# Images should be handled separately. Videos should be handled separately.
# Loading should be handled separately.
# Preprocessing (aspect ratio, resizing) should be handled separately.
# URL loading should be handled.
# Parquet format should be handled.
# Loading from ZIP should be handled.
class ImageOrVideoDataset(Dataset):
    def __init__(
        self,
        data_root: str,
        caption_column: str,
        video_column: str,
        resolution_buckets: List[Tuple[int, int, int]],
        dataset_file: Optional[str] = None,
        id_token: Optional[str] = None,
        remove_llm_prefixes: bool = False,
    ) -> None:
        super().__init__()

        self.data_root = Path(data_root)
        self.dataset_file = dataset_file
        self.caption_column = caption_column
        self.video_column = video_column
        self.id_token = f"{id_token.strip()} " if id_token else ""
        self.resolution_buckets = resolution_buckets

        # Four methods of loading data are supported.
        #   - Using a CSV: caption_column and video_column must be some column in the CSV. One could
        #     make use of other columns too, such as a motion score or aesthetic score, by modifying the
        #     logic in CSV processing.
        #   - Using two files containing line-separate captions and relative paths to videos.
        #   - Using a JSON file containing a list of dictionaries, where each dictionary has a `caption_column` and `video_column` key.
        #   - Using a JSONL file containing a list of line-separated dictionaries, where each dictionary has a `caption_column` and `video_column` key.
        # For a more detailed explanation about preparing dataset format, checkout the README.
        if dataset_file is None:
            (
                self.prompts,
                self.video_paths,
            ) = self._load_dataset_from_local_path()
        elif dataset_file.endswith(".csv"):
            (
                self.prompts,
                self.video_paths,
            ) = self._load_dataset_from_csv()
        elif dataset_file.endswith(".json"):
            (
                self.prompts,
                self.video_paths,
            ) = self._load_dataset_from_json()
        elif dataset_file.endswith(".jsonl"):
            (
                self.prompts,
                self.video_paths,
            ) = self._load_dataset_from_jsonl()
        else:
            raise ValueError(
                "Expected `--dataset_file` to be a path to a CSV file or a directory containing line-separated text prompts and video paths."
            )

        if len(self.video_paths) != len(self.prompts):
            raise ValueError(
                f"Expected length of prompts and videos to be the same but found {len(self.prompts)=} and {len(self.video_paths)=}. Please ensure that the number of caption prompts and videos match in your dataset."
            )

        # Clean LLM start phrases
        if remove_llm_prefixes:
            for i in range(len(self.prompts)):
                self.prompts[i] = self.prompts[i].strip()
                for phrase in COMMON_LLM_START_PHRASES:
                    if self.prompts[i].startswith(phrase):
                        self.prompts[i] = self.prompts[i].removeprefix(phrase).strip()

        self.video_transforms = transforms.Compose(
            [
                transforms.Lambda(self.scale_transform),
                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
            ]
        )

    @staticmethod
    def scale_transform(x):
        return x / 255.0

    def __len__(self) -> int:
        return len(self.video_paths)

    def __getitem__(self, index: int) -> Dict[str, Any]:
        if isinstance(index, list):
            # Here, index is actually a list of data objects that we need to return.
            # The BucketSampler should ideally return indices. But, in the sampler, we'd like
            # to have information about num_frames, height and width. Since this is not stored
            # as metadata, we need to read the video to get this information. You could read this
            # information without loading the full video in memory, but we do it anyway. In order
            # to not load the video twice (once to get the metadata, and once to return the loaded video
            # based on sampled indices), we cache it in the BucketSampler. When the sampler is
            # to yield, we yield the cache data instead of indices. So, this special check ensures
            # that data is not loaded a second time. PRs are welcome for improvements.
            return index

        prompt = self.id_token + self.prompts[index]

        video_path: Path = self.video_paths[index]
        if video_path.suffix.lower() in [".png", ".jpg", ".jpeg"]:
            video = self._preprocess_image(video_path)
        else:
            video = self._preprocess_video(video_path)

        return {
            "prompt": prompt,
            "video": video,
            "video_metadata": {
                "num_frames": video.shape[0],
                "height": video.shape[2],
                "width": video.shape[3],
            },
        }

    def _load_dataset_from_local_path(self) -> Tuple[List[str], List[str]]:
        if not self.data_root.exists():
            raise ValueError("Root folder for videos does not exist")

        prompt_path = self.data_root.joinpath(self.caption_column)
        video_path = self.data_root.joinpath(self.video_column)

        if not prompt_path.exists() or not prompt_path.is_file():
            raise ValueError(
                "Expected `--caption_column` to be path to a file in `--data_root` containing line-separated text prompts."
            )
        if not video_path.exists() or not video_path.is_file():
            raise ValueError(
                "Expected `--video_column` to be path to a file in `--data_root` containing line-separated paths to video data in the same directory."
            )

        with open(prompt_path, "r", encoding="utf-8") as file:
            prompts = [line.strip() for line in file.readlines() if len(line.strip()) > 0]
        with open(video_path, "r", encoding="utf-8") as file:
            video_paths = [self.data_root.joinpath(line.strip()) for line in file.readlines() if len(line.strip()) > 0]

        if any(not path.is_file() for path in video_paths):
            raise ValueError(
                f"Expected `{self.video_column=}` to be a path to a file in `{self.data_root=}` containing line-separated paths to video data but found atleast one path that is not a valid file."
            )

        return prompts, video_paths

    def _load_dataset_from_csv(self) -> Tuple[List[str], List[str]]:
        df = pd.read_csv(self.dataset_file)
        prompts = df[self.caption_column].tolist()
        video_paths = df[self.video_column].tolist()
        video_paths = [self.data_root.joinpath(line.strip()) for line in video_paths]

        if any(not path.is_file() for path in video_paths):
            raise ValueError(
                f"Expected `{self.video_column=}` to be a path to a file in `{self.data_root=}` containing line-separated paths to video data but found atleast one path that is not a valid file."
            )

        return prompts, video_paths

    def _load_dataset_from_json(self) -> Tuple[List[str], List[str]]:
        with open(self.dataset_file, "r", encoding="utf-8") as file:
            data = json.load(file)

        prompts = [entry[self.caption_column] for entry in data]
        video_paths = [self.data_root.joinpath(entry[self.video_column].strip()) for entry in data]

        if any(not path.is_file() for path in video_paths):
            raise ValueError(
                f"Expected `{self.video_column=}` to be a path to a file in `{self.data_root=}` containing line-separated paths to video data but found atleast one path that is not a valid file."
            )

        return prompts, video_paths

    def _load_dataset_from_jsonl(self) -> Tuple[List[str], List[str]]:
        with open(self.dataset_file, "r", encoding="utf-8") as file:
            data = [json.loads(line) for line in file]

        prompts = [entry[self.caption_column] for entry in data]
        video_paths = [self.data_root.joinpath(entry[self.video_column].strip()) for entry in data]

        if any(not path.is_file() for path in video_paths):
            raise ValueError(
                f"Expected `{self.video_column=}` to be a path to a file in `{self.data_root=}` containing line-separated paths to video data but found atleast one path that is not a valid file."
            )

        return prompts, video_paths

    def _preprocess_image(self, path: Path) -> torch.Tensor:
        # TODO(aryan): Support alpha channel in future by whitening background
        image = TTF.Image.open(path.as_posix()).convert("RGB")
        image = TTF.to_tensor(image)
        image = image * 2.0 - 1.0
        image = image.unsqueeze(0).contiguous()  # [C, H, W] -> [1, C, H, W] (1-frame video)
        return image

    def _preprocess_video(self, path: Path) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        """
        Loads a single video, or latent and prompt embedding, based on initialization parameters.
        Returns a [F, C, H, W] video tensor.
        """
        max_retries = 3
        retry_delay = 1.0  # seconds
        
        for attempt in range(max_retries):
            try:
                # Create video reader
                video_reader = decord.VideoReader(uri=path.as_posix())
                video_num_frames = len(video_reader)

                # Process frames
                indices = list(range(0, video_num_frames, video_num_frames // self.max_num_frames))
                frames = video_reader.get_batch(indices)
                frames = frames[: self.max_num_frames].float()
                frames = frames.permute(0, 3, 1, 2).contiguous()
                frames = torch.stack([self.video_transforms(frame) for frame in frames], dim=0)
                
                # Explicitly clean up resources
                del video_reader
                
                # Force garbage collection occasionally
                if random.random() < 0.05:  # 5% chance
                    gc.collect()
                    
                return frames
                
            except decord._ffi.base.DECORDError as e:
                # Log the error
                error_msg = str(e)
                if "Resource temporarily unavailable" in error_msg and attempt < max_retries - 1:
                    logger.warning(f"Retry {attempt+1}/{max_retries} loading video {path}: {error_msg}")
                    
                    # Clean up and wait before retrying
                    gc.collect()
                    time.sleep(retry_delay * (attempt + 1))  # Increasing backoff
                else:
                    # Either not a resource error or we've run out of retries
                    logger.error(f"Failed to load video {path} after {attempt+1} attempts: {error_msg}")
                    raise RuntimeError(f"Failed to load video after {max_retries} attempts: {error_msg}")


class ImageOrVideoDatasetWithResizing(ImageOrVideoDataset):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)

        self.max_num_frames = max(self.resolution_buckets, key=lambda x: x[0])[0]

    def _preprocess_image(self, path: Path) -> torch.Tensor:
        # TODO(aryan): Support alpha channel in future by whitening background
        image = TTF.Image.open(path.as_posix()).convert("RGB")
        image = TTF.to_tensor(image)

        nearest_res = self._find_nearest_resolution(image.shape[1], image.shape[2])
        image = resize(image, nearest_res)

        image = image * 2.0 - 1.0
        image = image.unsqueeze(0).contiguous()
        return image

    def _preprocess_video(self, path: Path) -> torch.Tensor:
        max_retries = 3
        retry_delay = 1.0  # seconds
        
        for attempt in range(max_retries):
            try:
                # Create video reader
                video_reader = decord.VideoReader(uri=path.as_posix())
                video_num_frames = len(video_reader)
                
                # Find appropriate bucket for the video
                video_buckets = [bucket for bucket in self.resolution_buckets if bucket[0] <= video_num_frames]
                
                if not video_buckets:
                    _, h, w = self.resolution_buckets[0]
                    video_buckets = [(1, h, w)]

                nearest_frame_bucket = min(
                    video_buckets,
                    key=lambda x: abs(x[0] - min(video_num_frames, self.max_num_frames)),
                    default=video_buckets[0],
                )[0]

                # Extract and process frames
                frame_indices = list(range(0, video_num_frames, video_num_frames // nearest_frame_bucket))
                frames = video_reader.get_batch(frame_indices)
                frames = frames[:nearest_frame_bucket].float()
                frames = frames.permute(0, 3, 1, 2).contiguous()

                nearest_res = self._find_nearest_resolution(frames.shape[2], frames.shape[3])
                frames_resized = torch.stack([resize(frame, nearest_res) for frame in frames], dim=0)
                frames = torch.stack([self.video_transforms(frame) for frame in frames_resized], dim=0)
                
                # Explicitly clean up resources
                del video_reader
                
                # Force garbage collection occasionally
                if random.random() < 0.05:  # 5% chance
                    gc.collect()
                    
                return frames
                
            except decord._ffi.base.DECORDError as e:
                # Log the error
                error_msg = str(e)
                if "Resource temporarily unavailable" in error_msg and attempt < max_retries - 1:
                    logger.warning(f"Retry {attempt+1}/{max_retries} loading video {path}: {error_msg}")
                    
                    # Clean up and wait before retrying
                    gc.collect()
                    time.sleep(retry_delay * (attempt + 1))  # Increasing backoff
                else:
                    # Either not a resource error or we've run out of retries
                    logger.error(f"Failed to load video {path} after {attempt+1} attempts: {error_msg}")
                    raise RuntimeError(f"Failed to load video after {max_retries} attempts: {error_msg}")

    def _find_nearest_resolution(self, height, width):
        nearest_res = min(self.resolution_buckets, key=lambda x: abs(x[1] - height) + abs(x[2] - width))
        return nearest_res[1], nearest_res[2]


class ImageOrVideoDatasetWithResizeAndRectangleCrop(ImageOrVideoDataset):
    def __init__(self, video_reshape_mode: str = "center", *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)

        self.video_reshape_mode = video_reshape_mode
        self.max_num_frames = max(self.resolution_buckets, key=lambda x: x[0])[0]

    def _resize_for_rectangle_crop(self, arr, image_size):
        reshape_mode = self.video_reshape_mode
        if arr.shape[3] / arr.shape[2] > image_size[1] / image_size[0]:
            arr = resize(
                arr,
                size=[image_size[0], int(arr.shape[3] * image_size[0] / arr.shape[2])],
                interpolation=InterpolationMode.BICUBIC,
            )
        else:
            arr = resize(
                arr,
                size=[int(arr.shape[2] * image_size[1] / arr.shape[3]), image_size[1]],
                interpolation=InterpolationMode.BICUBIC,
            )

        h, w = arr.shape[2], arr.shape[3]
        arr = arr.squeeze(0)

        delta_h = h - image_size[0]
        delta_w = w - image_size[1]

        if reshape_mode == "random" or reshape_mode == "none":
            top = np.random.randint(0, delta_h + 1)
            left = np.random.randint(0, delta_w + 1)
        elif reshape_mode == "center":
            top, left = delta_h // 2, delta_w // 2
        else:
            raise NotImplementedError
        arr = TT.functional.crop(arr, top=top, left=left, height=image_size[0], width=image_size[1])
        return arr

    def _preprocess_video(self, path: Path) -> torch.Tensor:
        max_retries = 3
        retry_delay = 1.0  # seconds
        
        for attempt in range(max_retries):
            try:
                # Create video reader
                video_reader = decord.VideoReader(uri=path.as_posix())
                video_num_frames = len(video_reader)
                
                # Find appropriate bucket for the video
                video_buckets = [bucket for bucket in self.resolution_buckets if bucket[0] <= video_num_frames]
                
                if not video_buckets:
                    _, h, w = self.resolution_buckets[0]
                    video_buckets = [(1, h, w)]

                nearest_frame_bucket = min(
                    video_buckets,
                    key=lambda x: abs(x[0] - min(video_num_frames, self.max_num_frames)),
                    default=video_buckets[0],
                )[0]

                # Extract and process frames
                frame_indices = list(range(0, video_num_frames, video_num_frames // nearest_frame_bucket))
                frames = video_reader.get_batch(frame_indices)
                frames = frames[:nearest_frame_bucket].float()
                frames = frames.permute(0, 3, 1, 2).contiguous()

                # Fix: Change self.resolutions to self.resolution_buckets to match the class attribute
                nearest_res = self._find_nearest_resolution(frames.shape[2], frames.shape[3])
                frames_resized = self._resize_for_rectangle_crop(frames, nearest_res)
                frames = torch.stack([self.video_transforms(frame) for frame in frames_resized], dim=0)
                
                # Explicitly clean up resources
                del video_reader
                
                # Force garbage collection occasionally
                if random.random() < 0.05:  # 5% chance
                    gc.collect()
                    
                return frames
                
            except decord._ffi.base.DECORDError as e:
                # Log the error
                error_msg = str(e)
                if "Resource temporarily unavailable" in error_msg and attempt < max_retries - 1:
                    logger.warning(f"Retry {attempt+1}/{max_retries} loading video {path}: {error_msg}")
                    
                    # Clean up and wait before retrying
                    gc.collect()
                    time.sleep(retry_delay * (attempt + 1))  # Increasing backoff
                else:
                    # Either not a resource error or we've run out of retries
                    logger.error(f"Failed to load video {path} after {attempt+1} attempts: {error_msg}")
                    raise RuntimeError(f"Failed to load video after {max_retries} attempts: {error_msg}")
        
    def _find_nearest_resolution(self, height, width):
        nearest_res = min(self.resolutions, key=lambda x: abs(x[1] - height) + abs(x[2] - width))
        return nearest_res[1], nearest_res[2]


class PrecomputedDataset(Dataset):
    def __init__(self, data_root: str, model_name: str = None, cleaned_model_id: str = None) -> None:
        super().__init__()

        self.data_root = Path(data_root)

        if model_name and cleaned_model_id:
            precomputation_dir = self.data_root / f"{model_name}_{cleaned_model_id}_{PRECOMPUTED_DIR_NAME}"
            self.latents_path = precomputation_dir / PRECOMPUTED_LATENTS_DIR_NAME
            self.conditions_path = precomputation_dir / PRECOMPUTED_CONDITIONS_DIR_NAME
        else:
            self.latents_path = self.data_root / PRECOMPUTED_DIR_NAME / PRECOMPUTED_LATENTS_DIR_NAME
            self.conditions_path = self.data_root / PRECOMPUTED_DIR_NAME / PRECOMPUTED_CONDITIONS_DIR_NAME

        self.latent_conditions = sorted(os.listdir(self.latents_path))
        self.text_conditions = sorted(os.listdir(self.conditions_path))

        assert len(self.latent_conditions) == len(self.text_conditions), "Number of captions and videos do not match"

    def __len__(self) -> int:
        return len(self.latent_conditions)

    def __getitem__(self, index: int) -> Dict[str, Any]:
        conditions = {}
        latent_path = self.latents_path / self.latent_conditions[index]
        condition_path = self.conditions_path / self.text_conditions[index]
        conditions["latent_conditions"] = torch.load(latent_path, map_location="cpu", weights_only=True)
        conditions["text_conditions"] = torch.load(condition_path, map_location="cpu", weights_only=True)
        return conditions


class BucketSampler(Sampler):
    r"""
    PyTorch Sampler that groups 3D data by height, width and frames.

    Args:
        data_source (`ImageOrVideoDataset`):
            A PyTorch dataset object that is an instance of `ImageOrVideoDataset`.
        batch_size (`int`, defaults to `8`):
            The batch size to use for training.
        shuffle (`bool`, defaults to `True`):
            Whether or not to shuffle the data in each batch before dispatching to dataloader.
        drop_last (`bool`, defaults to `False`):
            Whether or not to drop incomplete buckets of data after completely iterating over all data
            in the dataset. If set to True, only batches that have `batch_size` number of entries will
            be yielded. If set to False, it is guaranteed that all data in the dataset will be processed
            and batches that do not have `batch_size` number of entries will also be yielded.
    """

    def __init__(
        self, data_source: ImageOrVideoDataset, batch_size: int = 8, shuffle: bool = True, drop_last: bool = False
    ) -> None:
        self.data_source = data_source
        self.batch_size = batch_size
        self.shuffle = shuffle
        self.drop_last = drop_last

        self.buckets = {resolution: [] for resolution in data_source.resolution_buckets}

        self._raised_warning_for_drop_last = False

    def __len__(self):
        if self.drop_last and not self._raised_warning_for_drop_last:
            self._raised_warning_for_drop_last = True
            logger.warning(
                "Calculating the length for bucket sampler is not possible when `drop_last` is set to True. This may cause problems when setting the number of epochs used for training."
            )
        return (len(self.data_source) + self.batch_size - 1) // self.batch_size

    def __iter__(self):
        for index, data in enumerate(self.data_source):
            video_metadata = data["video_metadata"]
            f, h, w = video_metadata["num_frames"], video_metadata["height"], video_metadata["width"]

            self.buckets[(f, h, w)].append(data)
            if len(self.buckets[(f, h, w)]) == self.batch_size:
                if self.shuffle:
                    random.shuffle(self.buckets[(f, h, w)])
                yield self.buckets[(f, h, w)]
                del self.buckets[(f, h, w)]
                self.buckets[(f, h, w)] = []

        if self.drop_last:
            return

        for fhw, bucket in list(self.buckets.items()):
            if len(bucket) == 0:
                continue
            if self.shuffle:
                random.shuffle(bucket)
                yield bucket
                del self.buckets[fhw]
                self.buckets[fhw] = []