File size: 57,119 Bytes
91fb4ef
 
 
 
d78dede
91fb4ef
 
 
 
66c6879
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d78dede
 
 
 
 
 
 
 
 
 
 
 
 
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d78dede
 
 
 
91fb4ef
 
 
d78dede
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
d78dede
 
 
 
 
 
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
import json
import logging
import math
import os
import gc
import random
from datetime import datetime, timedelta
from pathlib import Path
from typing import Any, Dict, List
import resource
import diffusers
import torch
import torch.backends
import transformers
import wandb
from accelerate import Accelerator, DistributedType
from accelerate.logging import get_logger
from accelerate.utils import (
    DistributedDataParallelKwargs,
    InitProcessGroupKwargs,
    ProjectConfiguration,
    gather_object,
    set_seed,
)
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
from diffusers.optimization import get_scheduler
from diffusers.training_utils import cast_training_params
from diffusers.utils import export_to_video, load_image, load_video
from huggingface_hub import create_repo, upload_folder
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict
from tqdm import tqdm

from .args import Args, validate_args
from .constants import (
    FINETRAINERS_LOG_LEVEL,
    PRECOMPUTED_CONDITIONS_DIR_NAME,
    PRECOMPUTED_DIR_NAME,
    PRECOMPUTED_LATENTS_DIR_NAME,
)
from .dataset import BucketSampler, ImageOrVideoDatasetWithResizing, PrecomputedDataset
from .hooks import apply_layerwise_upcasting
from .models import get_config_from_model_name
from .patches import perform_peft_patches
from .state import State
from .utils.checkpointing import get_intermediate_ckpt_path, get_latest_ckpt_path_to_resume_from
from .utils.data_utils import should_perform_precomputation
from .utils.diffusion_utils import (
    get_scheduler_alphas,
    get_scheduler_sigmas,
    prepare_loss_weights,
    prepare_sigmas,
    prepare_target,
)
from .utils.file_utils import string_to_filename
from .utils.hub_utils import save_model_card
from .utils.memory_utils import free_memory, get_memory_statistics, make_contiguous
from .utils.model_utils import resolve_vae_cls_from_ckpt_path
from .utils.optimizer_utils import get_optimizer
from .utils.torch_utils import align_device_and_dtype, expand_tensor_dims, unwrap_model


logger = get_logger("finetrainers")
logger.setLevel(FINETRAINERS_LOG_LEVEL)


class Trainer:
    def __init__(self, args: Args) -> None:
        validate_args(args)

        self.args = args
        self.args.seed = self.args.seed or datetime.now().year
        self.state = State()

        # Tokenizers
        self.tokenizer = None
        self.tokenizer_2 = None
        self.tokenizer_3 = None

        # Text encoders
        self.text_encoder = None
        self.text_encoder_2 = None
        self.text_encoder_3 = None

        # Denoisers
        self.transformer = None
        self.unet = None

        # Autoencoders
        self.vae = None

        # Scheduler
        self.scheduler = None

        self.transformer_config = None
        self.vae_config = None

        self._init_distributed()
        self._init_logging()
        self._init_directories_and_repositories()
        self._init_config_options()

        # Peform any patches needed for training
        if len(self.args.layerwise_upcasting_modules) > 0:
            perform_peft_patches()
        # TODO(aryan): handle text encoders
        # if any(["text_encoder" in component_name for component_name in self.args.layerwise_upcasting_modules]):
        #     perform_text_encoder_patches()

        self.state.model_name = self.args.model_name
        self.model_config = get_config_from_model_name(self.args.model_name, self.args.training_type)

    def prepare_dataset(self) -> None:
        # TODO(aryan): Make a background process for fetching
        logger.info("Initializing dataset and dataloader")

        self.dataset = ImageOrVideoDatasetWithResizing(
            data_root=self.args.data_root,
            caption_column=self.args.caption_column,
            video_column=self.args.video_column,
            resolution_buckets=self.args.video_resolution_buckets,
            dataset_file=self.args.dataset_file,
            id_token=self.args.id_token,
            remove_llm_prefixes=self.args.remove_common_llm_caption_prefixes,
        )
        self.dataloader = torch.utils.data.DataLoader(
            self.dataset,
            batch_size=1,
            sampler=BucketSampler(self.dataset, batch_size=self.args.batch_size, shuffle=True),
            collate_fn=self.model_config.get("collate_fn"),
            num_workers=self.args.dataloader_num_workers,
            pin_memory=self.args.pin_memory,
        )

    def prepare_models(self) -> None:
        logger.info("Initializing models")

        load_components_kwargs = self._get_load_components_kwargs()
        condition_components, latent_components, diffusion_components = {}, {}, {}
        if not self.args.precompute_conditions:
            # To download the model files first on the main process (if not already present)
            # and then load the cached files afterward from the other processes.
            with self.state.accelerator.main_process_first():
                condition_components = self.model_config["load_condition_models"](**load_components_kwargs)
                latent_components = self.model_config["load_latent_models"](**load_components_kwargs)
                diffusion_components = self.model_config["load_diffusion_models"](**load_components_kwargs)

        components = {}
        components.update(condition_components)
        components.update(latent_components)
        components.update(diffusion_components)
        self._set_components(components)

        if self.vae is not None:
            if self.args.enable_slicing:
                self.vae.enable_slicing()
            if self.args.enable_tiling:
                self.vae.enable_tiling()

    def prepare_precomputations(self) -> None:
        if not self.args.precompute_conditions:
            return

        logger.info("Initializing precomputations")

        if self.args.batch_size != 1:
            raise ValueError("Precomputation is only supported with batch size 1. This will be supported in future.")

        def collate_fn(batch):
            latent_conditions = [x["latent_conditions"] for x in batch]
            text_conditions = [x["text_conditions"] for x in batch]
            batched_latent_conditions = {}
            batched_text_conditions = {}
            for key in list(latent_conditions[0].keys()):
                if torch.is_tensor(latent_conditions[0][key]):
                    batched_latent_conditions[key] = torch.cat([x[key] for x in latent_conditions], dim=0)
                else:
                    # TODO(aryan): implement batch sampler for precomputed latents
                    batched_latent_conditions[key] = [x[key] for x in latent_conditions][0]
            for key in list(text_conditions[0].keys()):
                if torch.is_tensor(text_conditions[0][key]):
                    batched_text_conditions[key] = torch.cat([x[key] for x in text_conditions], dim=0)
                else:
                    # TODO(aryan): implement batch sampler for precomputed latents
                    batched_text_conditions[key] = [x[key] for x in text_conditions][0]
            return {"latent_conditions": batched_latent_conditions, "text_conditions": batched_text_conditions}

        cleaned_model_id = string_to_filename(self.args.pretrained_model_name_or_path)
        precomputation_dir = (
            Path(self.args.data_root) / f"{self.args.model_name}_{cleaned_model_id}_{PRECOMPUTED_DIR_NAME}"
        )
        should_precompute = should_perform_precomputation(precomputation_dir)
        if not should_precompute:
            logger.info("Precomputed conditions and latents found. Loading precomputed data.")
            self.dataloader = torch.utils.data.DataLoader(
                PrecomputedDataset(
                    data_root=self.args.data_root, model_name=self.args.model_name, cleaned_model_id=cleaned_model_id
                ),
                batch_size=self.args.batch_size,
                shuffle=True,
                collate_fn=collate_fn,
                num_workers=self.args.dataloader_num_workers,
                pin_memory=self.args.pin_memory,
            )
            return

        logger.info("Precomputed conditions and latents not found. Running precomputation.")

        # At this point, no models are loaded, so we need to load and precompute conditions and latents
        with self.state.accelerator.main_process_first():
            condition_components = self.model_config["load_condition_models"](**self._get_load_components_kwargs())
        self._set_components(condition_components)
        self._move_components_to_device()
        self._disable_grad_for_components([self.text_encoder, self.text_encoder_2, self.text_encoder_3])

        if self.args.caption_dropout_p > 0 and self.args.caption_dropout_technique == "empty":
            logger.warning(
                "Caption dropout is not supported with precomputation yet. This will be supported in the future."
            )

        conditions_dir = precomputation_dir / PRECOMPUTED_CONDITIONS_DIR_NAME
        latents_dir = precomputation_dir / PRECOMPUTED_LATENTS_DIR_NAME
        conditions_dir.mkdir(parents=True, exist_ok=True)
        latents_dir.mkdir(parents=True, exist_ok=True)

        accelerator = self.state.accelerator

        # Precompute conditions
        progress_bar = tqdm(
            range(0, (len(self.dataset) + accelerator.num_processes - 1) // accelerator.num_processes),
            desc="Precomputing conditions",
            disable=not accelerator.is_local_main_process,
        )
        index = 0
        for i, data in enumerate(self.dataset):
            if i % accelerator.num_processes != accelerator.process_index:
                continue

            logger.debug(
                f"Precomputing conditions for batch {i + 1}/{len(self.dataset)} on process {accelerator.process_index}"
            )

            text_conditions = self.model_config["prepare_conditions"](
                tokenizer=self.tokenizer,
                tokenizer_2=self.tokenizer_2,
                tokenizer_3=self.tokenizer_3,
                text_encoder=self.text_encoder,
                text_encoder_2=self.text_encoder_2,
                text_encoder_3=self.text_encoder_3,
                prompt=data["prompt"],
                device=accelerator.device,
                dtype=self.args.transformer_dtype,
            )
            filename = conditions_dir / f"conditions-{accelerator.process_index}-{index}.pt"
            torch.save(text_conditions, filename.as_posix())
            index += 1
            progress_bar.update(1)
        self._delete_components()

        memory_statistics = get_memory_statistics()
        logger.info(f"Memory after precomputing conditions: {json.dumps(memory_statistics, indent=4)}")
        torch.cuda.reset_peak_memory_stats(accelerator.device)

        # Precompute latents
        with self.state.accelerator.main_process_first():
            latent_components = self.model_config["load_latent_models"](**self._get_load_components_kwargs())
        self._set_components(latent_components)
        self._move_components_to_device()
        self._disable_grad_for_components([self.vae])

        if self.vae is not None:
            if self.args.enable_slicing:
                self.vae.enable_slicing()
            if self.args.enable_tiling:
                self.vae.enable_tiling()

        progress_bar = tqdm(
            range(0, (len(self.dataset) + accelerator.num_processes - 1) // accelerator.num_processes),
            desc="Precomputing latents",
            disable=not accelerator.is_local_main_process,
        )
        index = 0
        for i, data in enumerate(self.dataset):
            if i % accelerator.num_processes != accelerator.process_index:
                continue

            logger.debug(
                f"Precomputing latents for batch {i + 1}/{len(self.dataset)} on process {accelerator.process_index}"
            )

            latent_conditions = self.model_config["prepare_latents"](
                vae=self.vae,
                image_or_video=data["video"].unsqueeze(0),
                device=accelerator.device,
                dtype=self.args.transformer_dtype,
                generator=self.state.generator,
                precompute=True,
            )
            filename = latents_dir / f"latents-{accelerator.process_index}-{index}.pt"
            torch.save(latent_conditions, filename.as_posix())
            index += 1
            progress_bar.update(1)
        self._delete_components()

        accelerator.wait_for_everyone()
        logger.info("Precomputation complete")

        memory_statistics = get_memory_statistics()
        logger.info(f"Memory after precomputing latents: {json.dumps(memory_statistics, indent=4)}")
        torch.cuda.reset_peak_memory_stats(accelerator.device)

        # Update dataloader to use precomputed conditions and latents
        self.dataloader = torch.utils.data.DataLoader(
            PrecomputedDataset(
                data_root=self.args.data_root, model_name=self.args.model_name, cleaned_model_id=cleaned_model_id
            ),
            batch_size=self.args.batch_size,
            shuffle=True,
            collate_fn=collate_fn,
            num_workers=self.args.dataloader_num_workers,
            pin_memory=self.args.pin_memory,
        )

    def prepare_trainable_parameters(self) -> None:
        logger.info("Initializing trainable parameters")

        with self.state.accelerator.main_process_first():
            diffusion_components = self.model_config["load_diffusion_models"](**self._get_load_components_kwargs())
        self._set_components(diffusion_components)

        components = [self.text_encoder, self.text_encoder_2, self.text_encoder_3, self.vae]
        self._disable_grad_for_components(components)

        if self.args.training_type == "full-finetune":
            logger.info("Finetuning transformer with no additional parameters")
            self._enable_grad_for_components([self.transformer])
        else:
            logger.info("Finetuning transformer with PEFT parameters")
            self._disable_grad_for_components([self.transformer])

        # Layerwise upcasting must be applied before adding the LoRA adapter.
        # If we don't perform this before moving to device, we might OOM on the GPU. So, best to do it on
        # CPU for now, before support is added in Diffusers for loading and enabling layerwise upcasting directly.
        if self.args.training_type == "lora" and "transformer" in self.args.layerwise_upcasting_modules:
            apply_layerwise_upcasting(
                self.transformer,
                storage_dtype=self.args.layerwise_upcasting_storage_dtype,
                compute_dtype=self.args.transformer_dtype,
                skip_modules_pattern=self.args.layerwise_upcasting_skip_modules_pattern,
                non_blocking=True,
            )

        self._move_components_to_device()

        if self.args.gradient_checkpointing:
            self.transformer.enable_gradient_checkpointing()

        if self.args.training_type == "lora":
            transformer_lora_config = LoraConfig(
                r=self.args.rank,
                lora_alpha=self.args.lora_alpha,
                init_lora_weights=True,
                target_modules=self.args.target_modules,
            )
            self.transformer.add_adapter(transformer_lora_config)
        else:
            transformer_lora_config = None

        # TODO(aryan): it might be nice to add some assertions here to make sure that lora parameters are still in fp32
        # even if layerwise upcasting. Would be nice to have a test as well

        self.register_saving_loading_hooks(transformer_lora_config)

    def register_saving_loading_hooks(self, transformer_lora_config):
        # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
        def save_model_hook(models, weights, output_dir):
            if self.state.accelerator.is_main_process:
                transformer_lora_layers_to_save = None

                for model in models:
                    if isinstance(
                        unwrap_model(self.state.accelerator, model),
                        type(unwrap_model(self.state.accelerator, self.transformer)),
                    ):
                        model = unwrap_model(self.state.accelerator, model)
                        if self.args.training_type == "lora":
                            transformer_lora_layers_to_save = get_peft_model_state_dict(model)
                    else:
                        raise ValueError(f"Unexpected save model: {model.__class__}")

                    # make sure to pop weight so that corresponding model is not saved again
                    if weights:
                        weights.pop()

                if self.args.training_type == "lora":
                    self.model_config["pipeline_cls"].save_lora_weights(
                        output_dir,
                        transformer_lora_layers=transformer_lora_layers_to_save,
                    )
                else:
                    model.save_pretrained(os.path.join(output_dir, "transformer"))

                    # In some cases, the scheduler needs to be loaded with specific config (e.g. in CogVideoX). Since we need
                    # to able to load all diffusion components from a specific checkpoint folder during validation, we need to
                    # ensure the scheduler config is serialized as well.
                    self.scheduler.save_pretrained(os.path.join(output_dir, "scheduler"))

        def load_model_hook(models, input_dir):
            if not self.state.accelerator.distributed_type == DistributedType.DEEPSPEED:
                while len(models) > 0:
                    model = models.pop()
                    if isinstance(
                        unwrap_model(self.state.accelerator, model),
                        type(unwrap_model(self.state.accelerator, self.transformer)),
                    ):
                        transformer_ = unwrap_model(self.state.accelerator, model)
                    else:
                        raise ValueError(
                            f"Unexpected save model: {unwrap_model(self.state.accelerator, model).__class__}"
                        )
            else:
                transformer_cls_ = unwrap_model(self.state.accelerator, self.transformer).__class__

                if self.args.training_type == "lora":
                    transformer_ = transformer_cls_.from_pretrained(
                        self.args.pretrained_model_name_or_path, subfolder="transformer"
                    )
                    transformer_.add_adapter(transformer_lora_config)
                    lora_state_dict = self.model_config["pipeline_cls"].lora_state_dict(input_dir)
                    transformer_state_dict = {
                        f'{k.replace("transformer.", "")}': v
                        for k, v in lora_state_dict.items()
                        if k.startswith("transformer.")
                    }
                    incompatible_keys = set_peft_model_state_dict(
                        transformer_, transformer_state_dict, adapter_name="default"
                    )
                    if incompatible_keys is not None:
                        # check only for unexpected keys
                        unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
                        if unexpected_keys:
                            logger.warning(
                                f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
                                f" {unexpected_keys}. "
                            )
                else:
                    transformer_ = transformer_cls_.from_pretrained(os.path.join(input_dir, "transformer"))

        self.state.accelerator.register_save_state_pre_hook(save_model_hook)
        self.state.accelerator.register_load_state_pre_hook(load_model_hook)

    def prepare_optimizer(self) -> None:
        logger.info("Initializing optimizer and lr scheduler")

        self.state.train_epochs = self.args.train_epochs
        self.state.train_steps = self.args.train_steps

        # Make sure the trainable params are in float32
        if self.args.training_type == "lora":
            cast_training_params([self.transformer], dtype=torch.float32)

        self.state.learning_rate = self.args.lr
        if self.args.scale_lr:
            self.state.learning_rate = (
                self.state.learning_rate
                * self.args.gradient_accumulation_steps
                * self.args.batch_size
                * self.state.accelerator.num_processes
            )

        transformer_trainable_parameters = list(filter(lambda p: p.requires_grad, self.transformer.parameters()))
        transformer_parameters_with_lr = {
            "params": transformer_trainable_parameters,
            "lr": self.state.learning_rate,
        }
        params_to_optimize = [transformer_parameters_with_lr]
        self.state.num_trainable_parameters = sum(p.numel() for p in transformer_trainable_parameters)

        use_deepspeed_opt = (
            self.state.accelerator.state.deepspeed_plugin is not None
            and "optimizer" in self.state.accelerator.state.deepspeed_plugin.deepspeed_config
        )
        optimizer = get_optimizer(
            params_to_optimize=params_to_optimize,
            optimizer_name=self.args.optimizer,
            learning_rate=self.state.learning_rate,
            beta1=self.args.beta1,
            beta2=self.args.beta2,
            beta3=self.args.beta3,
            epsilon=self.args.epsilon,
            weight_decay=self.args.weight_decay,
            use_8bit=self.args.use_8bit_bnb,
            use_deepspeed=use_deepspeed_opt,
        )

        num_update_steps_per_epoch = math.ceil(len(self.dataloader) / self.args.gradient_accumulation_steps)
        if self.state.train_steps is None:
            self.state.train_steps = self.state.train_epochs * num_update_steps_per_epoch
            self.state.overwrote_max_train_steps = True

        use_deepspeed_lr_scheduler = (
            self.state.accelerator.state.deepspeed_plugin is not None
            and "scheduler" in self.state.accelerator.state.deepspeed_plugin.deepspeed_config
        )
        total_training_steps = self.state.train_steps * self.state.accelerator.num_processes
        num_warmup_steps = self.args.lr_warmup_steps * self.state.accelerator.num_processes

        if use_deepspeed_lr_scheduler:
            from accelerate.utils import DummyScheduler

            lr_scheduler = DummyScheduler(
                name=self.args.lr_scheduler,
                optimizer=optimizer,
                total_num_steps=total_training_steps,
                num_warmup_steps=num_warmup_steps,
            )
        else:
            lr_scheduler = get_scheduler(
                name=self.args.lr_scheduler,
                optimizer=optimizer,
                num_warmup_steps=num_warmup_steps,
                num_training_steps=total_training_steps,
                num_cycles=self.args.lr_num_cycles,
                power=self.args.lr_power,
            )

        self.optimizer = optimizer
        self.lr_scheduler = lr_scheduler

    def prepare_for_training(self) -> None:
        self.transformer, self.optimizer, self.dataloader, self.lr_scheduler = self.state.accelerator.prepare(
            self.transformer, self.optimizer, self.dataloader, self.lr_scheduler
        )

        # We need to recalculate our total training steps as the size of the training dataloader may have changed.
        num_update_steps_per_epoch = math.ceil(len(self.dataloader) / self.args.gradient_accumulation_steps)
        if self.state.overwrote_max_train_steps:
            self.state.train_steps = self.state.train_epochs * num_update_steps_per_epoch
        # Afterwards we recalculate our number of training epochs
        self.state.train_epochs = math.ceil(self.state.train_steps / num_update_steps_per_epoch)
        self.state.num_update_steps_per_epoch = num_update_steps_per_epoch

    def prepare_trackers(self) -> None:
        logger.info("Initializing trackers")

        tracker_name = self.args.tracker_name or "finetrainers-experiment"
        self.state.accelerator.init_trackers(tracker_name, config=self._get_training_info())

    def train(self) -> None:
        logger.info("Starting training")


        # Add these lines at the beginning
        if hasattr(resource, 'RLIMIT_NOFILE'):
            try:
                soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
                logger.info(f"Current file descriptor limits in trainer: soft={soft}, hard={hard}")
                # Try to increase to hard limit if possible
                if soft < hard:
                    resource.setrlimit(resource.RLIMIT_NOFILE, (hard, hard))
                    new_soft, new_hard = resource.getrlimit(resource.RLIMIT_NOFILE)
                    logger.info(f"Updated file descriptor limits: soft={new_soft}, hard={new_hard}")
            except Exception as e:
                logger.warning(f"Could not check or update file descriptor limits: {e}")
        
        memory_statistics = get_memory_statistics()
        logger.info(f"Memory before training start: {json.dumps(memory_statistics, indent=4)}")

        if self.vae_config is None:
            # If we've precomputed conditions and latents already, and are now re-using it, we will never load
            # the VAE so self.vae_config will not be set. So, we need to load it here.
            vae_cls = resolve_vae_cls_from_ckpt_path(
                self.args.pretrained_model_name_or_path, revision=self.args.revision, cache_dir=self.args.cache_dir
            )
            vae_config = vae_cls.load_config(
                self.args.pretrained_model_name_or_path,
                subfolder="vae",
                revision=self.args.revision,
                cache_dir=self.args.cache_dir,
            )
            self.vae_config = FrozenDict(**vae_config)

        # In some cases, the scheduler needs to be loaded with specific config (e.g. in CogVideoX). Since we need
        # to able to load all diffusion components from a specific checkpoint folder during validation, we need to
        # ensure the scheduler config is serialized as well.
        if self.args.training_type == "full-finetune":
            self.scheduler.save_pretrained(os.path.join(self.args.output_dir, "scheduler"))

        self.state.train_batch_size = (
            self.args.batch_size * self.state.accelerator.num_processes * self.args.gradient_accumulation_steps
        )
        info = {
            "trainable parameters": self.state.num_trainable_parameters,
            "total samples": len(self.dataset),
            "train epochs": self.state.train_epochs,
            "train steps": self.state.train_steps,
            "batches per device": self.args.batch_size,
            "total batches observed per epoch": len(self.dataloader),
            "train batch size": self.state.train_batch_size,
            "gradient accumulation steps": self.args.gradient_accumulation_steps,
        }
        logger.info(f"Training configuration: {json.dumps(info, indent=4)}")

        global_step = 0
        first_epoch = 0
        initial_global_step = 0

        # Potentially load in the weights and states from a previous save
        (
            resume_from_checkpoint_path,
            initial_global_step,
            global_step,
            first_epoch,
        ) = get_latest_ckpt_path_to_resume_from(
            resume_from_checkpoint=self.args.resume_from_checkpoint,
            num_update_steps_per_epoch=self.state.num_update_steps_per_epoch,
            output_dir=self.args.output_dir,
        )
        if resume_from_checkpoint_path:
            self.state.accelerator.load_state(resume_from_checkpoint_path)

        progress_bar = tqdm(
            range(0, self.state.train_steps),
            initial=initial_global_step,
            desc="Training steps",
            disable=not self.state.accelerator.is_local_main_process,
        )

        accelerator = self.state.accelerator
        generator = torch.Generator(device=accelerator.device)
        if self.args.seed is not None:
            generator = generator.manual_seed(self.args.seed)
        self.state.generator = generator

        scheduler_sigmas = get_scheduler_sigmas(self.scheduler)
        scheduler_sigmas = (
            scheduler_sigmas.to(device=accelerator.device, dtype=torch.float32)
            if scheduler_sigmas is not None
            else None
        )
        scheduler_alphas = get_scheduler_alphas(self.scheduler)
        scheduler_alphas = (
            scheduler_alphas.to(device=accelerator.device, dtype=torch.float32)
            if scheduler_alphas is not None
            else None
        )

        for epoch in range(first_epoch, self.state.train_epochs):
            logger.debug(f"Starting epoch ({epoch + 1}/{self.state.train_epochs})")

            self.transformer.train()
            models_to_accumulate = [self.transformer]
            epoch_loss = 0.0
            num_loss_updates = 0

            for step, batch in enumerate(self.dataloader):
                logger.debug(f"Starting step {step + 1}")
                logs = {}

                with accelerator.accumulate(models_to_accumulate):
                    if not self.args.precompute_conditions:
                        videos = batch["videos"]
                        prompts = batch["prompts"]
                        batch_size = len(prompts)

                        if self.args.caption_dropout_technique == "empty":
                            if random.random() < self.args.caption_dropout_p:
                                prompts = [""] * batch_size

                        latent_conditions = self.model_config["prepare_latents"](
                            vae=self.vae,
                            image_or_video=videos,
                            patch_size=self.transformer_config.patch_size,
                            patch_size_t=self.transformer_config.patch_size_t,
                            device=accelerator.device,
                            dtype=self.args.transformer_dtype,
                            generator=self.state.generator,
                        )
                        text_conditions = self.model_config["prepare_conditions"](
                            tokenizer=self.tokenizer,
                            text_encoder=self.text_encoder,
                            tokenizer_2=self.tokenizer_2,
                            text_encoder_2=self.text_encoder_2,
                            prompt=prompts,
                            device=accelerator.device,
                            dtype=self.args.transformer_dtype,
                        )
                    else:
                        latent_conditions = batch["latent_conditions"]
                        text_conditions = batch["text_conditions"]
                        latent_conditions["latents"] = DiagonalGaussianDistribution(
                            latent_conditions["latents"]
                        ).sample(self.state.generator)

                        # This method should only be called for precomputed latents.
                        # TODO(aryan): rename this in separate PR
                        latent_conditions = self.model_config["post_latent_preparation"](
                            vae_config=self.vae_config,
                            patch_size=self.transformer_config.patch_size,
                            patch_size_t=self.transformer_config.patch_size_t,
                            **latent_conditions,
                        )
                        align_device_and_dtype(latent_conditions, accelerator.device, self.args.transformer_dtype)
                        align_device_and_dtype(text_conditions, accelerator.device, self.args.transformer_dtype)
                        batch_size = latent_conditions["latents"].shape[0]

                    latent_conditions = make_contiguous(latent_conditions)
                    text_conditions = make_contiguous(text_conditions)

                    if self.args.caption_dropout_technique == "zero":
                        if random.random() < self.args.caption_dropout_p:
                            text_conditions["prompt_embeds"].fill_(0)
                            text_conditions["prompt_attention_mask"].fill_(False)

                            # TODO(aryan): refactor later
                            if "pooled_prompt_embeds" in text_conditions:
                                text_conditions["pooled_prompt_embeds"].fill_(0)

                    sigmas = prepare_sigmas(
                        scheduler=self.scheduler,
                        sigmas=scheduler_sigmas,
                        batch_size=batch_size,
                        num_train_timesteps=self.scheduler.config.num_train_timesteps,
                        flow_weighting_scheme=self.args.flow_weighting_scheme,
                        flow_logit_mean=self.args.flow_logit_mean,
                        flow_logit_std=self.args.flow_logit_std,
                        flow_mode_scale=self.args.flow_mode_scale,
                        device=accelerator.device,
                        generator=self.state.generator,
                    )
                    timesteps = (sigmas * 1000.0).long()

                    noise = torch.randn(
                        latent_conditions["latents"].shape,
                        generator=self.state.generator,
                        device=accelerator.device,
                        dtype=self.args.transformer_dtype,
                    )
                    sigmas = expand_tensor_dims(sigmas, ndim=noise.ndim)

                    # TODO(aryan): We probably don't need calculate_noisy_latents because we can determine the type of
                    # scheduler and calculate the noisy latents accordingly. Look into this later.
                    if "calculate_noisy_latents" in self.model_config.keys():
                        noisy_latents = self.model_config["calculate_noisy_latents"](
                            scheduler=self.scheduler,
                            noise=noise,
                            latents=latent_conditions["latents"],
                            timesteps=timesteps,
                        )
                    else:
                        # Default to flow-matching noise addition
                        noisy_latents = (1.0 - sigmas) * latent_conditions["latents"] + sigmas * noise
                        noisy_latents = noisy_latents.to(latent_conditions["latents"].dtype)

                    latent_conditions.update({"noisy_latents": noisy_latents})

                    weights = prepare_loss_weights(
                        scheduler=self.scheduler,
                        alphas=scheduler_alphas[timesteps] if scheduler_alphas is not None else None,
                        sigmas=sigmas,
                        flow_weighting_scheme=self.args.flow_weighting_scheme,
                    )
                    weights = expand_tensor_dims(weights, noise.ndim)

                    pred = self.model_config["forward_pass"](
                        transformer=self.transformer,
                        scheduler=self.scheduler,
                        timesteps=timesteps,
                        **latent_conditions,
                        **text_conditions,
                    )
                    target = prepare_target(
                        scheduler=self.scheduler, noise=noise, latents=latent_conditions["latents"]
                    )

                    loss = weights.float() * (pred["latents"].float() - target.float()).pow(2)
                    # Average loss across all but batch dimension
                    loss = loss.mean(list(range(1, loss.ndim)))
                    # Average loss across batch dimension
                    loss = loss.mean()
                    accelerator.backward(loss)

                    if accelerator.sync_gradients:
                        if accelerator.distributed_type == DistributedType.DEEPSPEED:
                            grad_norm = self.transformer.get_global_grad_norm()
                            # In some cases the grad norm may not return a float
                            if torch.is_tensor(grad_norm):
                                grad_norm = grad_norm.item()
                        else:
                            grad_norm = accelerator.clip_grad_norm_(
                                self.transformer.parameters(), self.args.max_grad_norm
                            )
                            if torch.is_tensor(grad_norm):
                                grad_norm = grad_norm.item()

                        logs["grad_norm"] = grad_norm

                    self.optimizer.step()
                    self.lr_scheduler.step()
                    self.optimizer.zero_grad()

                # Checks if the accelerator has performed an optimization step behind the scenes
                if accelerator.sync_gradients:
                    progress_bar.update(1)
                    global_step += 1

                    # Checkpointing
                    if accelerator.distributed_type == DistributedType.DEEPSPEED or accelerator.is_main_process:
                        if global_step % self.args.checkpointing_steps == 0:
                            save_path = get_intermediate_ckpt_path(
                                checkpointing_limit=self.args.checkpointing_limit,
                                step=global_step,
                                output_dir=self.args.output_dir,
                            )
                            accelerator.save_state(save_path)

                    # Maybe run validation
                    should_run_validation = (
                        self.args.validation_every_n_steps is not None
                        and global_step % self.args.validation_every_n_steps == 0
                    )
                    if should_run_validation:
                        self.validate(global_step)

                loss_item = loss.detach().item()
                epoch_loss += loss_item
                num_loss_updates += 1
                logs["step_loss"] = loss_item
                logs["lr"] = self.lr_scheduler.get_last_lr()[0]
                progress_bar.set_postfix(logs)
                accelerator.log(logs, step=global_step)

                if global_step % 100 == 0:  # Every 100 steps
                    # Force garbage collection to clean up any lingering resources
                    gc.collect()

                if global_step >= self.state.train_steps:
                    break

                

            if num_loss_updates > 0:
                epoch_loss /= num_loss_updates
            accelerator.log({"epoch_loss": epoch_loss}, step=global_step)
            memory_statistics = get_memory_statistics()
            logger.info(f"Memory after epoch {epoch + 1}: {json.dumps(memory_statistics, indent=4)}")

            # Maybe run validation
            should_run_validation = (
                self.args.validation_every_n_epochs is not None
                and (epoch + 1) % self.args.validation_every_n_epochs == 0
            )
            if should_run_validation:
                self.validate(global_step)

            if epoch % 3 == 0:  # Every 3 epochs
                logger.info("Performing periodic resource cleanup")
                free_memory()
                gc.collect()
                torch.cuda.empty_cache()
                torch.cuda.synchronize(accelerator.device)

        accelerator.wait_for_everyone()
        if accelerator.is_main_process:
            transformer = unwrap_model(accelerator, self.transformer)

            if self.args.training_type == "lora":
                transformer_lora_layers = get_peft_model_state_dict(transformer)

                self.model_config["pipeline_cls"].save_lora_weights(
                    save_directory=self.args.output_dir,
                    transformer_lora_layers=transformer_lora_layers,
                )
            else:
                transformer.save_pretrained(os.path.join(self.args.output_dir, "transformer"))
        accelerator.wait_for_everyone()
        self.validate(step=global_step, final_validation=True)

        if accelerator.is_main_process:
            if self.args.push_to_hub:
                upload_folder(
                    repo_id=self.state.repo_id, folder_path=self.args.output_dir, ignore_patterns=["checkpoint-*"]
                )

        self._delete_components()
        memory_statistics = get_memory_statistics()
        logger.info(f"Memory after training end: {json.dumps(memory_statistics, indent=4)}")

        accelerator.end_training()

    def validate(self, step: int, final_validation: bool = False) -> None:
        logger.info("Starting validation")

        accelerator = self.state.accelerator
        num_validation_samples = len(self.args.validation_prompts)

        if num_validation_samples == 0:
            logger.warning("No validation samples found. Skipping validation.")
            if accelerator.is_main_process:
                if self.args.push_to_hub:
                    save_model_card(
                        args=self.args,
                        repo_id=self.state.repo_id,
                        videos=None,
                        validation_prompts=None,
                    )
            return

        self.transformer.eval()

        memory_statistics = get_memory_statistics()
        logger.info(f"Memory before validation start: {json.dumps(memory_statistics, indent=4)}")

        pipeline = self._get_and_prepare_pipeline_for_validation(final_validation=final_validation)

        all_processes_artifacts = []
        prompts_to_filenames = {}
        for i in range(num_validation_samples):
            # Skip current validation on all processes but one
            if i % accelerator.num_processes != accelerator.process_index:
                continue

            prompt = self.args.validation_prompts[i]
            image = self.args.validation_images[i]
            video = self.args.validation_videos[i]
            height = self.args.validation_heights[i]
            width = self.args.validation_widths[i]
            num_frames = self.args.validation_num_frames[i]
            frame_rate = self.args.validation_frame_rate
            if image is not None:
                image = load_image(image)
            if video is not None:
                video = load_video(video)

            logger.debug(
                f"Validating sample {i + 1}/{num_validation_samples} on process {accelerator.process_index}. Prompt: {prompt}",
                main_process_only=False,
            )
            validation_artifacts = self.model_config["validation"](
                pipeline=pipeline,
                prompt=prompt,
                image=image,
                video=video,
                height=height,
                width=width,
                num_frames=num_frames,
                frame_rate=frame_rate,
                num_videos_per_prompt=self.args.num_validation_videos_per_prompt,
                generator=torch.Generator(device=accelerator.device).manual_seed(
                    self.args.seed if self.args.seed is not None else 0
                ),
                # todo support passing `fps` for supported pipelines.
            )

            prompt_filename = string_to_filename(prompt)[:25]
            artifacts = {
                "image": {"type": "image", "value": image},
                "video": {"type": "video", "value": video},
            }
            for i, (artifact_type, artifact_value) in enumerate(validation_artifacts):
                if artifact_value:
                    artifacts.update({f"artifact_{i}": {"type": artifact_type, "value": artifact_value}})
            logger.debug(
                f"Validation artifacts on process {accelerator.process_index}: {list(artifacts.keys())}",
                main_process_only=False,
            )

            for index, (key, value) in enumerate(list(artifacts.items())):
                artifact_type = value["type"]
                artifact_value = value["value"]
                if artifact_type not in ["image", "video"] or artifact_value is None:
                    continue

                extension = "png" if artifact_type == "image" else "mp4"
                filename = "validation-" if not final_validation else "final-"
                filename += f"{step}-{accelerator.process_index}-{index}-{prompt_filename}.{extension}"
                if accelerator.is_main_process and extension == "mp4":
                    prompts_to_filenames[prompt] = filename
                filename = os.path.join(self.args.output_dir, filename)

                if artifact_type == "image" and artifact_value:
                    logger.debug(f"Saving image to {filename}")
                    artifact_value.save(filename)
                    artifact_value = wandb.Image(filename)
                elif artifact_type == "video" and artifact_value:
                    logger.debug(f"Saving video to {filename}")
                    # TODO: this should be configurable here as well as in validation runs where we call the pipeline that has `fps`.
                    export_to_video(artifact_value, filename, fps=frame_rate)
                    artifact_value = wandb.Video(filename, caption=prompt)

                all_processes_artifacts.append(artifact_value)

        all_artifacts = gather_object(all_processes_artifacts)

        if accelerator.is_main_process:
            tracker_key = "final" if final_validation else "validation"
            for tracker in accelerator.trackers:
                if tracker.name == "wandb":
                    artifact_log_dict = {}

                    image_artifacts = [artifact for artifact in all_artifacts if isinstance(artifact, wandb.Image)]
                    if len(image_artifacts) > 0:
                        artifact_log_dict["images"] = image_artifacts
                    video_artifacts = [artifact for artifact in all_artifacts if isinstance(artifact, wandb.Video)]
                    if len(video_artifacts) > 0:
                        artifact_log_dict["videos"] = video_artifacts
                    tracker.log({tracker_key: artifact_log_dict}, step=step)

            if self.args.push_to_hub and final_validation:
                video_filenames = list(prompts_to_filenames.values())
                prompts = list(prompts_to_filenames.keys())
                save_model_card(
                    args=self.args,
                    repo_id=self.state.repo_id,
                    videos=video_filenames,
                    validation_prompts=prompts,
                )

        # Remove all hooks that might have been added during pipeline initialization to the models
        pipeline.remove_all_hooks()
        del pipeline

        accelerator.wait_for_everyone()

        free_memory()
        memory_statistics = get_memory_statistics()
        logger.info(f"Memory after validation end: {json.dumps(memory_statistics, indent=4)}")
        torch.cuda.reset_peak_memory_stats(accelerator.device)

        if not final_validation:
            self.transformer.train()

    def evaluate(self) -> None:
        raise NotImplementedError("Evaluation has not been implemented yet.")

    def _init_distributed(self) -> None:
        logging_dir = Path(self.args.output_dir, self.args.logging_dir)
        project_config = ProjectConfiguration(project_dir=self.args.output_dir, logging_dir=logging_dir)
        ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
        init_process_group_kwargs = InitProcessGroupKwargs(
            backend="nccl", timeout=timedelta(seconds=self.args.nccl_timeout)
        )
        report_to = None if self.args.report_to.lower() == "none" else self.args.report_to

        accelerator = Accelerator(
            project_config=project_config,
            gradient_accumulation_steps=self.args.gradient_accumulation_steps,
            log_with=report_to,
            kwargs_handlers=[ddp_kwargs, init_process_group_kwargs],
        )

        # Disable AMP for MPS.
        if torch.backends.mps.is_available():
            accelerator.native_amp = False

        self.state.accelerator = accelerator

        if self.args.seed is not None:
            self.state.seed = self.args.seed
            set_seed(self.args.seed)

    def _init_logging(self) -> None:
        logging.basicConfig(
            format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
            datefmt="%m/%d/%Y %H:%M:%S",
            level=FINETRAINERS_LOG_LEVEL,
        )
        if self.state.accelerator.is_local_main_process:
            transformers.utils.logging.set_verbosity_warning()
            diffusers.utils.logging.set_verbosity_info()
        else:
            transformers.utils.logging.set_verbosity_error()
            diffusers.utils.logging.set_verbosity_error()

        logger.info("Initialized FineTrainers")
        logger.info(self.state.accelerator.state, main_process_only=False)

    def _init_directories_and_repositories(self) -> None:
        if self.state.accelerator.is_main_process:
            self.args.output_dir = Path(self.args.output_dir)
            self.args.output_dir.mkdir(parents=True, exist_ok=True)
            self.state.output_dir = Path(self.args.output_dir)

            if self.args.push_to_hub:
                repo_id = self.args.hub_model_id or Path(self.args.output_dir).name
                self.state.repo_id = create_repo(token=self.args.hub_token, repo_id=repo_id, exist_ok=True).repo_id

    def _init_config_options(self) -> None:
        # Enable TF32 for faster training on Ampere GPUs: https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
        if self.args.allow_tf32 and torch.cuda.is_available():
            torch.backends.cuda.matmul.allow_tf32 = True

    def _move_components_to_device(self):
        if self.text_encoder is not None:
            self.text_encoder = self.text_encoder.to(self.state.accelerator.device)
        if self.text_encoder_2 is not None:
            self.text_encoder_2 = self.text_encoder_2.to(self.state.accelerator.device)
        if self.text_encoder_3 is not None:
            self.text_encoder_3 = self.text_encoder_3.to(self.state.accelerator.device)
        if self.transformer is not None:
            self.transformer = self.transformer.to(self.state.accelerator.device)
        if self.unet is not None:
            self.unet = self.unet.to(self.state.accelerator.device)
        if self.vae is not None:
            self.vae = self.vae.to(self.state.accelerator.device)

    def _get_load_components_kwargs(self) -> Dict[str, Any]:
        load_component_kwargs = {
            "text_encoder_dtype": self.args.text_encoder_dtype,
            "text_encoder_2_dtype": self.args.text_encoder_2_dtype,
            "text_encoder_3_dtype": self.args.text_encoder_3_dtype,
            "transformer_dtype": self.args.transformer_dtype,
            "vae_dtype": self.args.vae_dtype,
            "shift": self.args.flow_shift,
            "revision": self.args.revision,
            "cache_dir": self.args.cache_dir,
        }
        if self.args.pretrained_model_name_or_path is not None:
            load_component_kwargs["model_id"] = self.args.pretrained_model_name_or_path
        return load_component_kwargs

    def _set_components(self, components: Dict[str, Any]) -> None:
        # Set models
        self.tokenizer = components.get("tokenizer", self.tokenizer)
        self.tokenizer_2 = components.get("tokenizer_2", self.tokenizer_2)
        self.tokenizer_3 = components.get("tokenizer_3", self.tokenizer_3)
        self.text_encoder = components.get("text_encoder", self.text_encoder)
        self.text_encoder_2 = components.get("text_encoder_2", self.text_encoder_2)
        self.text_encoder_3 = components.get("text_encoder_3", self.text_encoder_3)
        self.transformer = components.get("transformer", self.transformer)
        self.unet = components.get("unet", self.unet)
        self.vae = components.get("vae", self.vae)
        self.scheduler = components.get("scheduler", self.scheduler)

        # Set configs
        self.transformer_config = self.transformer.config if self.transformer is not None else self.transformer_config
        self.vae_config = self.vae.config if self.vae is not None else self.vae_config

    def _delete_components(self) -> None:
        self.tokenizer = None
        self.tokenizer_2 = None
        self.tokenizer_3 = None
        self.text_encoder = None
        self.text_encoder_2 = None
        self.text_encoder_3 = None
        self.transformer = None
        self.unet = None
        self.vae = None
        self.scheduler = None
        free_memory()
        torch.cuda.synchronize(self.state.accelerator.device)

    def _get_and_prepare_pipeline_for_validation(self, final_validation: bool = False) -> DiffusionPipeline:
        accelerator = self.state.accelerator
        if not final_validation:
            pipeline = self.model_config["initialize_pipeline"](
                model_id=self.args.pretrained_model_name_or_path,
                tokenizer=self.tokenizer,
                text_encoder=self.text_encoder,
                tokenizer_2=self.tokenizer_2,
                text_encoder_2=self.text_encoder_2,
                transformer=unwrap_model(accelerator, self.transformer),
                vae=self.vae,
                device=accelerator.device,
                revision=self.args.revision,
                cache_dir=self.args.cache_dir,
                enable_slicing=self.args.enable_slicing,
                enable_tiling=self.args.enable_tiling,
                enable_model_cpu_offload=self.args.enable_model_cpu_offload,
                is_training=True,
            )
        else:
            self._delete_components()

            # Load the transformer weights from the final checkpoint if performing full-finetune
            transformer = None
            if self.args.training_type == "full-finetune":
                transformer = self.model_config["load_diffusion_models"](model_id=self.args.output_dir)["transformer"]

            pipeline = self.model_config["initialize_pipeline"](
                model_id=self.args.pretrained_model_name_or_path,
                transformer=transformer,
                device=accelerator.device,
                revision=self.args.revision,
                cache_dir=self.args.cache_dir,
                enable_slicing=self.args.enable_slicing,
                enable_tiling=self.args.enable_tiling,
                enable_model_cpu_offload=self.args.enable_model_cpu_offload,
                is_training=False,
            )

            # Load the LoRA weights if performing LoRA finetuning
            if self.args.training_type == "lora":
                pipeline.load_lora_weights(self.args.output_dir)

        return pipeline

    def _disable_grad_for_components(self, components: List[torch.nn.Module]):
        for component in components:
            if component is not None:
                component.requires_grad_(False)

    def _enable_grad_for_components(self, components: List[torch.nn.Module]):
        for component in components:
            if component is not None:
                component.requires_grad_(True)

    def _get_training_info(self) -> dict:
        args = self.args.to_dict()

        training_args = args.get("training_arguments", {})
        training_type = training_args.get("training_type", "")

        # LoRA/non-LoRA stuff.
        if training_type == "full-finetune":
            filtered_training_args = {
                k: v for k, v in training_args.items() if k not in {"rank", "lora_alpha", "target_modules"}
            }
        else:
            filtered_training_args = training_args

        # Diffusion/flow stuff.
        diffusion_args = args.get("diffusion_arguments", {})
        scheduler_name = self.scheduler.__class__.__name__
        if scheduler_name != "FlowMatchEulerDiscreteScheduler":
            filtered_diffusion_args = {k: v for k, v in diffusion_args.items() if "flow" not in k}
        else:
            filtered_diffusion_args = diffusion_args

        # Rest of the stuff.
        updated_training_info = args.copy()
        updated_training_info["training_arguments"] = filtered_training_args
        updated_training_info["diffusion_arguments"] = filtered_diffusion_args
        return updated_training_info