File size: 28,684 Bytes
0ad7e2a
 
 
 
 
 
64a70c0
 
0ad7e2a
 
c8589f9
0ad7e2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d464085
 
 
 
 
 
 
 
0ad7e2a
d464085
0ad7e2a
 
d464085
 
 
0ad7e2a
 
 
 
 
 
 
 
 
 
 
 
d464085
0ad7e2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adc5756
 
 
 
0ad7e2a
adc5756
0ad7e2a
 
 
adc5756
 
 
 
 
 
 
 
0ad7e2a
 
 
adc5756
 
0ad7e2a
adc5756
 
 
 
0ad7e2a
adc5756
0ad7e2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d464085
 
 
 
 
0ad7e2a
 
 
 
 
d464085
 
0ad7e2a
 
 
 
 
 
 
 
d464085
0ad7e2a
 
 
 
 
d464085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ad7e2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64a70c0
0ad7e2a
 
 
d464085
0ad7e2a
 
 
 
 
 
d464085
 
0ad7e2a
 
 
 
 
64a70c0
0ad7e2a
 
 
d464085
0ad7e2a
 
 
 
 
 
 
 
 
 
 
 
 
64a70c0
0ad7e2a
 
 
 
 
 
 
 
 
 
64a70c0
0ad7e2a
 
 
 
 
 
 
 
 
 
64a70c0
0ad7e2a
 
 
 
 
 
 
64a70c0
 
d464085
c8589f9
64a70c0
 
 
 
 
 
 
 
c8589f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d464085
 
 
 
 
 
 
c8589f9
 
 
 
 
 
d464085
c8589f9
 
 
 
 
 
64a70c0
d464085
 
 
 
64a70c0
d464085
64a70c0
 
 
d464085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64a70c0
 
d464085
64a70c0
 
d464085
 
 
 
64a70c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8589f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64a70c0
 
 
 
 
 
 
c8589f9
64a70c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8589f9
 
 
 
 
 
64a70c0
 
 
adc5756
 
64a70c0
adc5756
 
 
 
 
 
 
 
 
 
64a70c0
adc5756
 
 
64a70c0
 
adc5756
 
 
 
 
64a70c0
adc5756
 
64a70c0
 
 
adc5756
 
 
 
 
 
 
 
 
 
 
64a70c0
adc5756
 
 
 
 
 
64a70c0
adc5756
64a70c0
adc5756
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
"""
Train tab for Video Model Studio UI
"""

import gradio as gr
import logging
from typing import Dict, Any, List, Optional, Tuple
from pathlib import Path

from .base_tab import BaseTab
from ..config import TRAINING_PRESETS, OUTPUT_PATH, MODEL_TYPES, ASK_USER_TO_DUPLICATE_SPACE, SMALL_TRAINING_BUCKETS
from ..utils import TrainingLogParser

logger = logging.getLogger(__name__)

class TrainTab(BaseTab):
    """Train tab for model training"""
    
    def __init__(self, app_state):
        super().__init__(app_state)
        self.id = "train_tab"
        self.title = "4️⃣  Train"
    
    def create(self, parent=None) -> gr.TabItem:
        """Create the Train tab UI components"""
        with gr.TabItem(self.title, id=self.id) as tab:
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        self.components["train_title"] = gr.Markdown("## 0 files available for training (0 bytes)")

                    with gr.Row():
                        with gr.Column():
                            self.components["training_preset"] = gr.Dropdown(
                                choices=list(TRAINING_PRESETS.keys()),
                                label="Training Preset",
                                value=list(TRAINING_PRESETS.keys())[0]
                            )
                        self.components["preset_info"] = gr.Markdown()

                    with gr.Row():
                        with gr.Column():
                            self.components["model_type"] = gr.Dropdown(
                                choices=list(MODEL_TYPES.keys()),
                                label="Model Type",
                                value=list(MODEL_TYPES.keys())[0]
                            )
                        with gr.Column():
                            self.components["training_type"] = gr.Dropdown(
                                choices=list(TRAINING_TYPES.keys()),
                                label="Training Type",
                                value=list(TRAINING_TYPES.keys())[0]
                            )

                    with gr.Row():
                        self.components["model_info"] = gr.Markdown(
                            value=self.get_model_info(list(MODEL_TYPES.keys())[0], list(TRAINING_TYPES.keys())[0])
                        )

                    # LoRA specific parameters (will show/hide based on training type)
                    with gr.Row(visible=True) as lora_params_row:
                        self.components["lora_params_row"] = lora_params_row
                        self.components["lora_rank"] = gr.Dropdown(
                            label="LoRA Rank",
                            choices=["16", "32", "64", "128", "256", "512", "1024"],
                            value="128",
                            type="value"
                        )
                        self.components["lora_alpha"] = gr.Dropdown(
                            label="LoRA Alpha",
                            choices=["16", "32", "64", "128", "256", "512", "1024"],
                            value="128",
                            type="value"
                        )
                    
                    with gr.Row():
                        self.components["num_epochs"] = gr.Number(
                            label="Number of Epochs",
                            value=70,
                            minimum=1,
                            precision=0
                        )
                        self.components["batch_size"] = gr.Number(
                            label="Batch Size",
                            value=1,
                            minimum=1,
                            precision=0
                        )
                    with gr.Row():
                        self.components["learning_rate"] = gr.Number(
                            label="Learning Rate",
                            value=2e-5,
                            minimum=1e-7
                        )
                        self.components["save_iterations"] = gr.Number(
                            label="Save checkpoint every N iterations",
                            value=500,
                            minimum=50,
                            precision=0,
                            info="Model will be saved periodically after these many steps"
                        )
                
                with gr.Column():
                    with gr.Row():
                        # Check for existing checkpoints to determine button text
                        has_checkpoints = len(list(OUTPUT_PATH.glob("checkpoint-*"))) > 0
                        start_text = "Continue Training" if has_checkpoints else "Start Training"
                        
                        self.components["start_btn"] = gr.Button(
                            start_text,
                            variant="primary",
                            interactive=not ASK_USER_TO_DUPLICATE_SPACE
                        )
                        
                        # Just use stop and pause buttons for now to ensure compatibility
                        self.components["stop_btn"] = gr.Button(
                            "Stop at Last Checkpoint",
                            variant="primary",
                            interactive=False
                        )
                        
                        self.components["pause_resume_btn"] = gr.Button(
                            "Resume Training",
                            variant="secondary",
                            interactive=False,
                            visible=False
                        )
                        
                        # Add delete checkpoints button - THIS IS THE KEY FIX
                        self.components["delete_checkpoints_btn"] = gr.Button(
                            "Delete All Checkpoints",
                            variant="stop",
                            interactive=True
                        )

                    with gr.Row():
                        with gr.Column():
                            self.components["status_box"] = gr.Textbox(
                                label="Training Status",
                                interactive=False,
                                lines=4
                            )
                            with gr.Accordion("See training logs"):
                                self.components["log_box"] = gr.TextArea(
                                    label="Finetrainers output (see HF Space logs for more details)",
                                    interactive=False,
                                    lines=40,
                                    max_lines=200,
                                    autoscroll=True
                                )
                    
        return tab
    
    def connect_events(self) -> None:
        """Connect event handlers to UI components"""
        # Model type change event
        def update_model_info(model, training_type):
            params = self.get_default_params(MODEL_TYPES[model], TRAINING_TYPES[training_type])
            info = self.get_model_info(MODEL_TYPES[model], TRAINING_TYPES[training_type])
            show_lora_params = training_type == list(TRAINING_TYPES.keys())[0]  # Show if LoRA Finetune
            
            return {
                self.components["model_info"]: info,
                self.components["num_epochs"]: params["num_epochs"],
                self.components["batch_size"]: params["batch_size"],
                self.components["learning_rate"]: params["learning_rate"],
                self.components["save_iterations"]: params["save_iterations"],
                self.components["lora_params_row"]: gr.Row(visible=show_lora_params)
            }
            
        self.components["model_type"].change(
            fn=lambda v: self.app.update_ui_state(model_type=v),
            inputs=[self.components["model_type"]],
            outputs=[]
        ).then(
            fn=update_model_info,
            inputs=[self.components["model_type"], self.components["training_type"]],
            outputs=[
                self.components["model_info"],
                self.components["num_epochs"],
                self.components["batch_size"],
                self.components["learning_rate"],
                self.components["save_iterations"],
                self.components["lora_params_row"]
            ]
        )
        
        # Training type change event
        self.components["training_type"].change(
            fn=lambda v: self.app.update_ui_state(training_type=v),
            inputs=[self.components["training_type"]],
            outputs=[]
        ).then(
            fn=update_model_info,
            inputs=[self.components["model_type"], self.components["training_type"]],
            outputs=[
                self.components["model_info"],
                self.components["num_epochs"],
                self.components["batch_size"],
                self.components["learning_rate"],
                self.components["save_iterations"],
                self.components["lora_params_row"]
            ]
        )
        
        # Training parameters change events
        self.components["lora_rank"].change(
            fn=lambda v: self.app.update_ui_state(lora_rank=v),
            inputs=[self.components["lora_rank"]],
            outputs=[]
        )

        self.components["lora_alpha"].change(
            fn=lambda v: self.app.update_ui_state(lora_alpha=v),
            inputs=[self.components["lora_alpha"]],
            outputs=[]
        )

        self.components["num_epochs"].change(
            fn=lambda v: self.app.update_ui_state(num_epochs=v),
            inputs=[self.components["num_epochs"]],
            outputs=[]
        )

        self.components["batch_size"].change(
            fn=lambda v: self.app.update_ui_state(batch_size=v),
            inputs=[self.components["batch_size"]],
            outputs=[]
        )

        self.components["learning_rate"].change(
            fn=lambda v: self.app.update_ui_state(learning_rate=v),
            inputs=[self.components["learning_rate"]],
            outputs=[]
        )

        self.components["save_iterations"].change(
            fn=lambda v: self.app.update_ui_state(save_iterations=v),
            inputs=[self.components["save_iterations"]],
            outputs=[]
        )
        
        # Training preset change event
        self.components["training_preset"].change(
            fn=lambda v: self.app.update_ui_state(training_preset=v),
            inputs=[self.components["training_preset"]],
            outputs=[]
        ).then(
            fn=self.update_training_params,
            inputs=[self.components["training_preset"]],
            outputs=[
                self.components["model_type"],
                self.components["training_type"],
                self.components["lora_rank"],
                self.components["lora_alpha"],
                self.components["num_epochs"],
                self.components["batch_size"],
                self.components["learning_rate"],
                self.components["save_iterations"],
                self.components["preset_info"],
                self.components["lora_params_row"]
            ]
        )
        
        # Training control events
        self.components["start_btn"].click(
            fn=self.handle_training_start,
            inputs=[
                self.components["training_preset"],
                self.components["model_type"],
                self.components["training_type"],
                self.components["lora_rank"],
                self.components["lora_alpha"],
                self.components["num_epochs"],
                self.components["batch_size"],
                self.components["learning_rate"],
                self.components["save_iterations"],
                self.app.tabs["manage_tab"].components["repo_id"]
            ],
            outputs=[
                self.components["status_box"],
                self.components["log_box"]
            ]
        ).success(
            fn=self.get_latest_status_message_logs_and_button_labels,
            outputs=[
                self.components["status_box"],
                self.components["log_box"],
                self.components["start_btn"],
                self.components["stop_btn"],
                self.components["pause_resume_btn"]
            ]
        )

        self.components["pause_resume_btn"].click(
            fn=self.handle_pause_resume,
            outputs=[
                self.components["status_box"],
                self.components["log_box"],
                self.components["start_btn"],
                self.components["stop_btn"],
                self.components["pause_resume_btn"]
            ]
        )

        self.components["stop_btn"].click(
            fn=self.handle_stop,
            outputs=[
                self.components["status_box"],
                self.components["log_box"],
                self.components["start_btn"],
                self.components["stop_btn"],
                self.components["pause_resume_btn"]
            ]
        )
        
    def handle_training_start(self, preset, model_type, training_type, *args):
        """Handle training start with proper log parser reset and checkpoint detection"""
        # Safely reset log parser if it exists
        if hasattr(self.app, 'log_parser') and self.app.log_parser is not None:
            self.app.log_parser.reset()
        else:
            logger.warning("Log parser not initialized, creating a new one")
            from ..utils import TrainingLogParser
            self.app.log_parser = TrainingLogParser()
        
        # Check for latest checkpoint
        checkpoints = list(OUTPUT_PATH.glob("checkpoint-*"))
        resume_from = None
        
        if checkpoints:
            # Find the latest checkpoint
            latest_checkpoint = max(checkpoints, key=os.path.getmtime)
            resume_from = str(latest_checkpoint)
            logger.info(f"Found checkpoint at {resume_from}, will resume training")
        
        # Convert model_type display name to internal name
        model_internal_type = MODEL_TYPES.get(model_type)
        
        if not model_internal_type:
            logger.error(f"Invalid model type: {model_type}")
            return f"Error: Invalid model type '{model_type}'", "Model type not recognized"
        
        # Convert training_type display name to internal name
        training_internal_type = TRAINING_TYPES.get(training_type)
        
        if not training_internal_type:
            logger.error(f"Invalid training type: {training_type}")
            return f"Error: Invalid training type '{training_type}'", "Training type not recognized"
        
        # Start training (it will automatically use the checkpoint if provided)
        try:
            return self.app.trainer.start_training(
                model_internal_type,  # Use internal model type
                *args,
                preset_name=preset,
                training_type=training_internal_type,  # Pass the internal training type
                resume_from_checkpoint=resume_from
            )
        except Exception as e:
            logger.exception("Error starting training")
            return f"Error starting training: {str(e)}", f"Exception: {str(e)}\n\nCheck the logs for more details."

    
    def get_model_info(self, model_type: str, training_type: str) -> str:
        """Get information about the selected model type and training method"""
        training_method = "LoRA finetune" if training_type == "lora" else "Full finetune"
        
        if model_type == "hunyuan_video":
            base_info = """### HunyuanVideo
    - Required VRAM: ~48GB minimum
    - Recommended batch size: 1-2
    - Typical training time: 2-4 hours
    - Default resolution: 49x512x768"""
            
            if training_type == "lora":
                return base_info + "\n- Required VRAM: ~18GB minimum\n- Default LoRA rank: 128 (~400 MB)"
            else:
                return base_info + "\n- Required VRAM: ~21GB minimum\n- Full model size: ~8GB"
                
        elif model_type == "wan":
            base_info = """### Wan-2.1-T2V
    - Recommended batch size: 1-2
    - Typical training time: 1-3 hours
    - Default resolution: 49x512x768"""
            
            if training_type == "lora":
                return base_info + "\n- Required VRAM: ~16GB minimum\n- Default LoRA rank: 32 (~120 MB)"
            else:
                return base_info + "\n- **Full finetune not supported in this UI**" + "\n- Required VRAM: ~18GB minimum\n- Default LoRA rank: 128 (~400 MB)"
            else:
                return base_info + "\n- Required VRAM: ~21GB minimum\n- Full model size: ~8GB"
                
        elif model_type == "wan":
            base_info = """### Wan-2.1-T2V
    - Recommended batch size: 1-2
    - Typical training time: 1-3 hours
    - Default resolution: 49x512x768"""
            
            if training_type == "lora":
                return base_info + "\n- Required VRAM: ~16GB minimum\n- Default LoRA rank: 32 (~120 MB)"
            else:
                return base_info + "\n- **Full finetune not supported in this UI**" + "\n- Default LoRA rank: 128 (~600 MB)"
            else:
                return base_info + "\n- **Full finetune not recommended due to VRAM requirements**"
                
        elif model_type == "ltx_video":
            base_info = """### LTX-Video
    - Recommended batch size: 1-4
    - Typical training time: 1-3 hours
    - Default resolution: 49x512x768"""
            
            if training_type == "lora":
                return base_

    def get_default_params(self, model_type: str) -> Dict[str, Any]:
        """Get default training parameters for model type"""
        if model_type == "hunyuan_video":
            return {
                "num_epochs": 70,
                "batch_size": 1,
                "learning_rate": 2e-5,
                "save_iterations": 500,
                "video_resolution_buckets": SMALL_TRAINING_BUCKETS,
                "video_reshape_mode": "center",
                "caption_dropout_p": 0.05,
                "gradient_accumulation_steps": 1,
                "rank": 128,
                "lora_alpha": 128
            }
        else:  # ltx_video
            return {
                "num_epochs": 70,
                "batch_size": 1,
                "learning_rate": 3e-5,
                "save_iterations": 500,
                "video_resolution_buckets": SMALL_TRAINING_BUCKETS,
                "video_reshape_mode": "center",
                "caption_dropout_p": 0.05,
                "gradient_accumulation_steps": 4,
                "rank": 128,
                "lora_alpha": 128
            }
            
    def update_training_params(self, preset_name: str) -> Tuple:
        """Update UI components based on selected preset while preserving custom settings"""
        preset = TRAINING_PRESETS[preset_name]
        
        # Load current UI state to check if user has customized values
        current_state = self.app.load_ui_values()
        
        # Find the display name that maps to our model type
        model_display_name = next(
            key for key, value in MODEL_TYPES.items() 
            if value == preset["model_type"]
        )
            
        # Get preset description for display
        description = preset.get("description", "")
        
        # Get max values from buckets
        buckets = preset["training_buckets"]
        max_frames = max(frames for frames, _, _ in buckets)
        max_height = max(height for _, height, _ in buckets)
        max_width = max(width for _, _, width in buckets)
        bucket_info = f"\nMaximum video size: {max_frames} frames at {max_width}x{max_height} resolution"
        
        info_text = f"{description}{bucket_info}"
        
        # Return values in the same order as the output components
        # Use preset defaults but preserve user-modified values if they exist
        lora_rank_val = current_state.get("lora_rank") if current_state.get("lora_rank") != preset.get("lora_rank", "128") else preset["lora_rank"]
        lora_alpha_val = current_state.get("lora_alpha") if current_state.get("lora_alpha") != preset.get("lora_alpha", "128") else preset["lora_alpha"]
        num_epochs_val = current_state.get("num_epochs") if current_state.get("num_epochs") != preset.get("num_epochs", 70) else preset["num_epochs"]
        batch_size_val = current_state.get("batch_size") if current_state.get("batch_size") != preset.get("batch_size", 1) else preset["batch_size"]
        learning_rate_val = current_state.get("learning_rate") if current_state.get("learning_rate") != preset.get("learning_rate", 3e-5) else preset["learning_rate"]
        save_iterations_val = current_state.get("save_iterations") if current_state.get("save_iterations") != preset.get("save_iterations", 500) else preset["save_iterations"]
        
        return (
            model_display_name,
            lora_rank_val,
            lora_alpha_val,
            num_epochs_val,
            batch_size_val,
            learning_rate_val,
            save_iterations_val,
            info_text
        )
    
    def update_training_ui(self, training_state: Dict[str, Any]):
        """Update UI components based on training state"""
        updates = {}
        
        # Update status box with high-level information
        status_text = []
        if training_state["status"] != "idle":
            status_text.extend([
                f"Status: {training_state['status']}",
                f"Progress: {training_state['progress']}",
                f"Step: {training_state['current_step']}/{training_state['total_steps']}",
                    
                # Epoch information
                # there is an issue with how epoch is reported because we display:
                # Progress: 96.9%, Step: 872/900, Epoch: 12/50
                # we should probably just show the steps
                #f"Epoch: {training_state['current_epoch']}/{training_state['total_epochs']}",
                
                f"Time elapsed: {training_state['elapsed']}",
                f"Estimated remaining: {training_state['remaining']}",
                "",
                f"Current loss: {training_state['step_loss']}",
                f"Learning rate: {training_state['learning_rate']}",
                f"Gradient norm: {training_state['grad_norm']}",
                f"Memory usage: {training_state['memory']}"
            ])
            
            if training_state["error_message"]:
                status_text.append(f"\nError: {training_state['error_message']}")
                
        updates["status_box"] = "\n".join(status_text)
        
        # Update button states
        updates["start_btn"] = gr.Button(
            "Start training",
            interactive=(training_state["status"] in ["idle", "completed", "error", "stopped"]),
            variant="primary" if training_state["status"] == "idle" else "secondary"
        )
        
        updates["stop_btn"] = gr.Button(
            "Stop training",
            interactive=(training_state["status"] in ["training", "initializing"]),
            variant="stop"
        )
        
        return updates
        
    def handle_pause_resume(self):
        status, _, _ = self.get_latest_status_message_and_logs()

        if status == "paused":
            self.app.trainer.resume_training()
        else:
            self.app.trainer.pause_training()

        return self.get_latest_status_message_logs_and_button_labels()

    def handle_stop(self):
        self.app.trainer.stop_training()
        return self.get_latest_status_message_logs_and_button_labels()
    
    def get_latest_status_message_and_logs(self) -> Tuple[str, str, str]:
        """Get latest status message, log content, and status code in a safer way"""
        state = self.app.trainer.get_status()
        logs = self.app.trainer.get_logs()

        # Check if training process died unexpectedly
        training_died = False
        
        if state["status"] == "training" and not self.app.trainer.is_training_running():
            state["status"] = "error"
            state["message"] = "Training process terminated unexpectedly."
            training_died = True
            
            # Look for error in logs
            error_lines = []
            for line in logs.splitlines():
                if "Error:" in line or "Exception:" in line or "Traceback" in line:
                    error_lines.append(line)
            
            if error_lines:
                state["message"] += f"\n\nPossible error: {error_lines[-1]}"

        # Ensure log parser is initialized
        if not hasattr(self.app, 'log_parser') or self.app.log_parser is None:
            from ..utils import TrainingLogParser
            self.app.log_parser = TrainingLogParser()
            logger.info("Initialized missing log parser")

        # Parse new log lines
        if logs and not training_died:
            last_state = None
            for line in logs.splitlines():
                try:
                    state_update = self.app.log_parser.parse_line(line)
                    if state_update:
                        last_state = state_update
                except Exception as e:
                    logger.error(f"Error parsing log line: {str(e)}")
                    continue
            
            if last_state:
                ui_updates = self.update_training_ui(last_state)
                state["message"] = ui_updates.get("status_box", state["message"])
        
        # Parse status for training state
        if "completed" in state["message"].lower():
            state["status"] = "completed"
        elif "error" in state["message"].lower():
            state["status"] = "error"
        elif "failed" in state["message"].lower():
            state["status"] = "error"
        elif "stopped" in state["message"].lower():
            state["status"] = "stopped"

        return (state["status"], state["message"], logs)

    def get_latest_status_message_logs_and_button_labels(self) -> Tuple:
        """Get latest status message, logs and button states"""
        status, message, logs = self.get_latest_status_message_and_logs()
        
        # Add checkpoints detection
        has_checkpoints = len(list(OUTPUT_PATH.glob("checkpoint-*"))) > 0
        
        button_updates = self.update_training_buttons(status, has_checkpoints).values()
        
        # Return in order expected by timer
        return (message, logs, *button_updates)
    
    def update_training_buttons(self, status: str, has_checkpoints: bool = None) -> Dict:
        """Update training control buttons based on state"""
        if has_checkpoints is None:
            has_checkpoints = len(list(OUTPUT_PATH.glob("checkpoint-*"))) > 0
            
        is_training = status in ["training", "initializing"]
        is_completed = status in ["completed", "error", "stopped"]
        
        start_text = "Continue Training" if has_checkpoints else "Start Training"
        
        # Only include buttons that we know exist in components
        result = {
            "start_btn": gr.Button(
                value=start_text,
                interactive=not is_training,
                variant="primary" if not is_training else "secondary",
            ),
            "stop_btn": gr.Button(
                value="Stop at Last Checkpoint",
                interactive=is_training,
                variant="primary" if is_training else "secondary",
            )
        }
        
        # Add delete_checkpoints_btn only if it exists in components
        if "delete_checkpoints_btn" in self.components:
            result["delete_checkpoints_btn"] = gr.Button(
                value="Delete All Checkpoints",
                interactive=has_checkpoints and not is_training,
                variant="stop",
            )
        else:
            # Add pause_resume_btn as fallback
            result["pause_resume_btn"] = gr.Button(
                value="Resume Training" if status == "paused" else "Pause Training",
                interactive=(is_training or status == "paused") and not is_completed,
                variant="secondary",
                visible=False
            )
        
        return result