File size: 52,799 Bytes
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32b4f0f
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4905a7d
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
947f205
 
 
 
 
 
32b4f0f
 
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
947f205
 
 
91fb4ef
 
 
 
 
 
 
 
 
 
947f205
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32b4f0f
91fb4ef
32b4f0f
 
 
91fb4ef
f577b1e
91fb4ef
 
 
f577b1e
91fb4ef
 
 
f577b1e
91fb4ef
 
 
 
 
 
 
32b4f0f
4905a7d
32b4f0f
 
91fb4ef
32b4f0f
 
 
 
 
 
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32b4f0f
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
32b4f0f
91fb4ef
 
32b4f0f
 
 
 
 
 
 
91fb4ef
32b4f0f
91fb4ef
32b4f0f
91fb4ef
32b4f0f
 
 
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
c90af3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91fb4ef
 
 
 
 
 
 
 
 
 
947f205
91fb4ef
 
 
 
 
 
947f205
91fb4ef
 
 
 
 
947f205
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c90af3c
 
 
 
 
 
 
 
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
947f205
 
 
 
 
 
 
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c90af3c
 
 
 
 
 
 
 
 
 
91fb4ef
 
c90af3c
91fb4ef
 
 
c90af3c
 
91fb4ef
 
 
c90af3c
91fb4ef
 
 
 
 
 
 
 
 
 
 
32b4f0f
 
91fb4ef
 
df0584b
91fb4ef
 
 
 
 
32b4f0f
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32b4f0f
91fb4ef
 
 
e020146
32b4f0f
e020146
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
32b4f0f
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
import platform
import subprocess

#import sys
#print("python = ", sys.version)

# can be "Linux", "Darwin"
if platform.system() == "Linux":
    # for some reason it says "pip not found"
    # and also "pip3 not found"
    # subprocess.run(
    #     "pip install flash-attn --no-build-isolation",
    #
    #     # hmm... this should be False, since we are in a CUDA environment, no?
    #     env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    #     
    #     shell=True,
    # )
    pass

import gradio as gr
from pathlib import Path
import logging
import mimetypes
import shutil
import os
import traceback
import asyncio
import tempfile
import zipfile
from typing import Any, Optional, Dict, List, Union, Tuple
from typing import AsyncGenerator
from training_service import TrainingService
from captioning_service import CaptioningService
from splitting_service import SplittingService
from import_service import ImportService
from config import (
    STORAGE_PATH, VIDEOS_TO_SPLIT_PATH, STAGING_PATH,
    TRAINING_PATH, LOG_FILE_PATH, TRAINING_VIDEOS_PATH, MODEL_PATH, OUTPUT_PATH, DEFAULT_CAPTIONING_BOT_INSTRUCTIONS,
    DEFAULT_PROMPT_PREFIX, HF_API_TOKEN, ASK_USER_TO_DUPLICATE_SPACE, MODEL_TYPES, TRAINING_BUCKETS
)
from utils import make_archive, count_media_files, format_media_title, is_image_file, is_video_file, validate_model_repo, format_time
from finetrainers_utils import copy_files_to_training_dir, prepare_finetrainers_dataset
from training_log_parser import TrainingLogParser

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

httpx_logger = logging.getLogger('httpx')
httpx_logger.setLevel(logging.WARN)


class VideoTrainerUI:
    def __init__(self):
        self.trainer = TrainingService()
        self.splitter = SplittingService()
        self.importer = ImportService()
        self.captioner = CaptioningService()
        self._should_stop_captioning = False
        self.log_parser = TrainingLogParser()
    
    def update_training_ui(self, training_state: Dict[str, Any]):
        """Update UI components based on training state"""
        updates = {}
        
        print("update_training_ui: training_state = ", training_state)

        # Update status box with high-level information
        status_text = []
        if training_state["status"] != "idle":
            status_text.extend([
                f"Status: {training_state['status']}",
                f"Progress: {training_state['progress']}",
                f"Step: {training_state['current_step']}/{training_state['total_steps']}",
                    
                # Epoch information
                # there is an issue with how epoch is reported because we display:
                # Progress: 96.9%, Step: 872/900, Epoch: 12/50
                # we should probably just show the steps
                #f"Epoch: {training_state['current_epoch']}/{training_state['total_epochs']}",
                
                f"Time elapsed: {training_state['elapsed']}",
                f"Estimated remaining: {training_state['remaining']}",
                "",
                f"Current loss: {training_state['step_loss']}",
                f"Learning rate: {training_state['learning_rate']}",
                f"Gradient norm: {training_state['grad_norm']}",
                f"Memory usage: {training_state['memory']}"
            ])
            
            if training_state["error_message"]:
                status_text.append(f"\nError: {training_state['error_message']}")
                
        updates["status_box"] = "\n".join(status_text)
        
        # Update button states
        updates["start_btn"] = gr.Button(
            "Start training",
            interactive=(training_state["status"] in ["idle", "completed", "error", "stopped"]),
            variant="primary" if training_state["status"] == "idle" else "secondary"
        )
        
        updates["stop_btn"] = gr.Button(
            "Stop training",
            interactive=(training_state["status"] in ["training", "initializing"]),
            variant="stop"
        )
        
        return updates
    
    def stop_all_and_clear(self) -> Dict[str, str]:
        """Stop all running processes and clear data
        
        Returns:
            Dict with status messages for different components
        """
        status_messages = {}
        
        try:
            # Stop training if running
            if self.trainer.is_training_running():
                training_result = self.trainer.stop_training()
                status_messages["training"] = training_result["status"]
            
            # Stop captioning if running
            if self.captioner:
                self.captioner.stop_captioning()
                status_messages["captioning"] = "Captioning stopped"
            
            # Stop scene detection if running
            if self.splitter.is_processing():
                self.splitter.processing = False
                status_messages["splitting"] = "Scene detection stopped"
            
            # Properly close logging before clearing log file
            if self.trainer.file_handler:
                self.trainer.file_handler.close()
                logger.removeHandler(self.trainer.file_handler)
                self.trainer.file_handler = None
                
            if LOG_FILE_PATH.exists():
                LOG_FILE_PATH.unlink()
            
            # Clear all data directories
            for path in [VIDEOS_TO_SPLIT_PATH, STAGING_PATH, TRAINING_VIDEOS_PATH, TRAINING_PATH,
                        MODEL_PATH, OUTPUT_PATH]:
                if path.exists():
                    try:
                        shutil.rmtree(path)
                        path.mkdir(parents=True, exist_ok=True)
                    except Exception as e:
                        status_messages[f"clear_{path.name}"] = f"Error clearing {path.name}: {str(e)}"
                    else:
                        status_messages[f"clear_{path.name}"] = f"Cleared {path.name}"
            
            # Reset any persistent state
            self._should_stop_captioning = True
            self.splitter.processing = False
            
            # Recreate logging setup
            self.trainer.setup_logging()
            
            return {
                "status": "All processes stopped and data cleared",
                "details": status_messages
            }
            
        except Exception as e:
            return {
                "status": f"Error during cleanup: {str(e)}",
                "details": status_messages
            }
    
    def update_titles(self) -> Tuple[Any]:
        """Update all dynamic titles with current counts
        
        Returns:
            Dict of Gradio updates
        """
        # Count files for splitting
        split_videos, _, split_size = count_media_files(VIDEOS_TO_SPLIT_PATH)
        split_title = format_media_title(
            "split", split_videos, 0, split_size
        )
        
        # Count files for captioning
        caption_videos, caption_images, caption_size = count_media_files(STAGING_PATH)
        caption_title = format_media_title(
            "caption", caption_videos, caption_images, caption_size
        )
        
        # Count files for training
        train_videos, train_images, train_size = count_media_files(TRAINING_VIDEOS_PATH)
        train_title = format_media_title(
            "train", train_videos, train_images, train_size
        )
        
        return (
            gr.Markdown(value=split_title),
            gr.Markdown(value=caption_title),
            gr.Markdown(value=f"{train_title} available for training")
        )

    def copy_files_to_training_dir(self, prompt_prefix: str):
        """Run auto-captioning process"""

        # Initialize captioner if not already done
        self._should_stop_captioning = False

        try:
            copy_files_to_training_dir(prompt_prefix)

        except Exception as e:
            traceback.print_exc()
            raise gr.Error(f"Error copying assets to training dir: {str(e)}")

    async def start_caption_generation(self, captioning_bot_instructions: str, prompt_prefix: str) -> AsyncGenerator[gr.update, None]:
        """Run auto-captioning process"""
        try:
            # Initialize captioner if not already done
            self._should_stop_captioning = False

            async for rows in self.captioner.start_caption_generation(captioning_bot_instructions, prompt_prefix):
                # Yield UI update
                yield gr.update(
                    value=rows,
                    headers=["name", "status"]
                )

            # Final update after completion
            yield gr.update(
                value=self.list_training_files_to_caption(),
                headers=["name", "status"]
            )

        except Exception as e:
            yield gr.update(
                value=[[str(e), "error"]],
                headers=["name", "status"]
            )

    def list_training_files_to_caption(self) -> List[List[str]]:
        """List all clips and images - both pending and captioned"""
        files = []
        already_listed: Dict[str, bool] = {}

        # Check files in STAGING_PATH
        for file in STAGING_PATH.glob("*.*"):
            if is_video_file(file) or is_image_file(file):
                txt_file = file.with_suffix('.txt')
                status = "captioned" if txt_file.exists() else "no caption"
                file_type = "video" if is_video_file(file) else "image"
                files.append([file.name, f"{status} ({file_type})", str(file)])
                already_listed[str(file.name)] = True
   
        # Check files in TRAINING_VIDEOS_PATH 
        for file in TRAINING_VIDEOS_PATH.glob("*.*"):
            if not str(file.name) in already_listed:
                if is_video_file(file) or is_image_file(file):
                    txt_file = file.with_suffix('.txt')
                    if txt_file.exists():
                        file_type = "video" if is_video_file(file) else "image"
                        files.append([file.name, f"captioned ({file_type})", str(file)])
                    
        # Sort by filename
        files.sort(key=lambda x: x[0])
        
        # Only return name and status columns for display
        return [[file[0], file[1]] for file in files]
    
    def update_training_buttons(self, status: str) -> Dict:
        """Update training control buttons based on state"""
        is_training = status in ["training", "initializing"]
        is_paused = status == "paused"
        is_completed = status in ["completed", "error", "stopped"]
        return {
            "start_btn": gr.Button(
                interactive=not is_training and not is_paused,
                variant="primary" if not is_training else "secondary",
            ),
            "stop_btn": gr.Button(
                interactive=is_training or is_paused,
                variant="stop",
            ),
            "pause_resume_btn": gr.Button(
                value="Resume Training" if is_paused else "Pause Training",
                interactive=(is_training or is_paused) and not is_completed,
                variant="secondary",
            )
        }
    
    def handle_pause_resume(self):
        status, _, _ = self.get_latest_status_message_and_logs()

        if status == "paused":
            self.trainer.resume_training()
        else:
            self.trainer.pause_training()

        return self.get_latest_status_message_logs_and_button_labels()

    def handle_stop(self):
        self.trainer.stop_training()
        return self.get_latest_status_message_logs_and_button_labels()

    def handle_training_dataset_select(self, evt: gr.SelectData) -> Tuple[Optional[str], Optional[str], Optional[str]]:
        """Handle selection of both video clips and images"""
        try:
            if not evt:
                return [
                    gr.Image(
                        interactive=False,
                        visible=False
                    ),
                    gr.Video(
                        interactive=False,
                        visible=False
                    ),
                    gr.Textbox(
                        visible=False
                    ),
                    "No file selected"
                ]
                
            file_name = evt.value
            if not file_name:
                return [
                    gr.Image(
                        interactive=False,
                        visible=False
                    ),
                    gr.Video(
                        interactive=False,
                        visible=False
                    ),
                    gr.Textbox(
                        visible=False
                    ),
                    "No file selected"
                ]
                
            # Check both possible locations for the file
            possible_paths = [
                STAGING_PATH / file_name,

                # note: we use to look into this dir for already-captioned clips,
                # but we don't do this anymore
                #TRAINING_VIDEOS_PATH / file_name
            ]
            
            # Find the first existing file path
            file_path = None
            for path in possible_paths:
                if path.exists():
                    file_path = path
                    break
                    
            if not file_path:
                return [
                    gr.Image(
                        interactive=False,
                        visible=False
                    ),
                    gr.Video(
                        interactive=False,
                        visible=False
                    ),
                    gr.Textbox(
                        visible=False
                    ),
                    f"File not found: {file_name}"
                ]
                
            txt_path = file_path.with_suffix('.txt')
            caption = txt_path.read_text() if txt_path.exists() else ""
            
            # Handle video files
            if is_video_file(file_path):
                return [
                    gr.Image(
                        interactive=False,
                        visible=False
                    ),
                    gr.Video(
                        label="Video Preview",
                        interactive=False,
                        visible=True,
                        value=str(file_path)
                    ),
                    gr.Textbox(
                        label="Caption",
                        lines=6,
                        interactive=True,
                        visible=True,
                        value=str(caption)
                    ),
                    None
                ]
            # Handle image files
            elif is_image_file(file_path):
                return [
                    gr.Image(
                        label="Image Preview",
                        interactive=False,
                        visible=True,
                        value=str(file_path)
                    ),
                    gr.Video(
                        interactive=False,
                        visible=False
                    ),
                    gr.Textbox(
                        label="Caption",
                        lines=6,
                        interactive=True,
                        visible=True,
                        value=str(caption)
                    ),
                    None
                ]
            else:
                return [
                    gr.Image(
                        interactive=False,
                        visible=False
                    ),
                    gr.Video(
                        interactive=False,
                        visible=False
                    ),
                    gr.Textbox(
                        interactive=False,
                        visible=False
                    ),
                    f"Unsupported file type: {file_path.suffix}"
                ]
        except Exception as e:
            logger.error(f"Error handling selection: {str(e)}")
            return [
                gr.Image(
                    interactive=False,
                    visible=False
                ),
                gr.Video(
                    interactive=False,
                    visible=False
                ),
                gr.Textbox(
                    interactive=False,
                    visible=False
                ),
                f"Error handling selection: {str(e)}"
            ]
  
    def save_caption_changes(self, preview_caption: str, preview_image: str, preview_video: str, prompt_prefix: str):
        """Save changes to caption"""
        try:
            # Add prefix if not already present 
            if prompt_prefix and not preview_caption.startswith(prompt_prefix):
                full_caption = f"{prompt_prefix}{preview_caption}"
            else:
                full_caption = preview_caption
                
            path = Path(preview_video if preview_video else preview_image)
            if path.suffix == '.txt':
                self.trainer.update_file_caption(path.with_suffix(''), full_caption)
            else:
                self.trainer.update_file_caption(path, full_caption)
            return gr.update(value="Caption saved successfully!")
        except Exception as e:
            return gr.update(value=f"Error saving caption: {str(e)}")

    def get_model_info(self, model_type: str) -> str:
        """Get information about the selected model type"""
        if model_type == "hunyuan_video":
            return """### HunyuanVideo (LoRA)
    - Best for learning complex video generation patterns
    - Required VRAM: ~47GB minimum
    - Recommended batch size: 1-2
    - Typical training time: 2-4 hours
    - Default resolution: 49x512x768
    - Default LoRA rank: 128"""
                
        elif model_type == "ltx_video":
            return """### LTX-Video (LoRA)
    - Lightweight video model
    - Required VRAM: ~18GB minimum 
    - Recommended batch size: 1-4
    - Typical training time: 1-3 hours
    - Default resolution: 49x512x768
    - Default LoRA rank: 128"""
                
        return ""

    def get_default_params(self, model_type: str) -> Dict[str, Any]:
        """Get default training parameters for model type"""
        if model_type == "hunyuan_video":
            return {
                "num_epochs": 70,
                "batch_size": 1,
                "learning_rate": 2e-5,
                "save_iterations": 500,
                "video_resolution_buckets": TRAINING_BUCKETS,
                "video_reshape_mode": "center",
                "caption_dropout_p": 0.05,
                "gradient_accumulation_steps": 1,
                "rank": 128,
                "lora_alpha": 128
            }
        else:  # ltx_video
            return {
                "num_epochs": 70,
                "batch_size": 1,
                "learning_rate": 3e-5,
                "save_iterations": 500,
                "video_resolution_buckets": TRAINING_BUCKETS,
                "video_reshape_mode": "center",
                "caption_dropout_p": 0.05,
                "gradient_accumulation_steps": 4,
                "rank": 128,
                "lora_alpha": 128
            }

    def preview_file(self, selected_text: str) -> Dict:
        """Generate preview based on selected file
        
        Args:
            selected_text: Text of the selected item containing filename
            
        Returns:
            Dict with preview content for each preview component
        """
        if not selected_text or "Caption:" in selected_text:
            return {
                "video": None,
                "image": None, 
                "text": None
            }
            
        # Extract filename from the preview text (remove size info)
        filename = selected_text.split(" (")[0].strip()
        file_path = TRAINING_VIDEOS_PATH / filename
        
        if not file_path.exists():
            return {
                "video": None,
                "image": None,
                "text": f"File not found: {filename}"
            }

        # Detect file type
        mime_type, _ = mimetypes.guess_type(str(file_path))
        if not mime_type:
            return {
                "video": None,
                "image": None,
                "text": f"Unknown file type: {filename}"
            }

        # Return appropriate preview
        if mime_type.startswith('video/'):
            return {
                "video": str(file_path),
                "image": None,
                "text": None
            }
        elif mime_type.startswith('image/'):
            return {
                "video": None,
                "image": str(file_path),
                "text": None
            }
        elif mime_type.startswith('text/'):
            try:
                text_content = file_path.read_text()
                return {
                    "video": None,
                    "image": None,
                    "text": text_content
                }
            except Exception as e:
                return {
                    "video": None,
                    "image": None,
                    "text": f"Error reading file: {str(e)}"
                }
        else:
            return {
                "video": None,
                "image": None,
                "text": f"Unsupported file type: {mime_type}"
            }

    def list_unprocessed_videos(self) -> gr.Dataframe:
        """Update list of unprocessed videos"""
        videos = self.splitter.list_unprocessed_videos()
        # videos is already in [[name, status]] format from splitting_service
        return gr.Dataframe(
            headers=["name", "status"],
            value=videos,
            interactive=False
        )

    async def start_scene_detection(self, enable_splitting: bool) -> str:
        """Start background scene detection process
        
        Args:
            enable_splitting: Whether to split videos into scenes
        """
        if self.splitter.is_processing():
            return "Scene detection already running"
            
        try:
            await self.splitter.start_processing(enable_splitting)
            return "Scene detection completed"
        except Exception as e:
            return f"Error during scene detection: {str(e)}"


    def get_latest_status_message_and_logs(self) -> Tuple[str, str, str]:
        state = self.trainer.get_status()
        logs = self.trainer.get_logs()

        # Parse new log lines
        if logs:
            last_state = None
            for line in logs.splitlines():
                state_update = self.log_parser.parse_line(line)
                if state_update:
                    last_state = state_update
            
            if last_state:
                ui_updates = self.update_training_ui(last_state)
                state["message"] = ui_updates.get("status_box", state["message"])
        
        # Parse status for training state
        if "completed" in state["message"].lower():
            state["status"] = "completed"

        return (state["status"], state["message"], logs)

    def get_latest_status_message_logs_and_button_labels(self) -> Tuple[str, str, Any, Any, Any]:
        status, message, logs = self.get_latest_status_message_and_logs()
        return (
            message,
            logs,
            *self.update_training_buttons(status).values()
        )

    def get_latest_button_labels(self) -> Tuple[Any, Any, Any]:
        status, message, logs = self.get_latest_status_message_and_logs()
        return self.update_training_buttons(status).values()
    
    def refresh_dataset(self):
        """Refresh all dynamic lists and training state"""
        video_list = self.splitter.list_unprocessed_videos()
        training_dataset = self.list_training_files_to_caption()

        return (
            video_list,
            training_dataset
        )

    def update_training_params(self, preset_name: str) -> Dict:
        """Update UI components based on selected preset"""
        preset = TRAINING_PRESETS[preset_name]
               
        # Get preset description for display
        description = preset.get("description", "")
        bucket_info = f"\nBucket configuration: {len(preset['training_buckets'])} buckets"
        info_text = f"{description}{bucket_info}"
        
        return {
            "model_type": gr.Dropdown(value=MODEL_TYPES[preset["model_type"]]),
            "lora_rank": gr.Dropdown(value=preset["lora_rank"]),
            "lora_alpha": gr.Dropdown(value=preset["lora_alpha"]),
            "num_epochs": gr.Number(value=preset["num_epochs"]),
            "batch_size": gr.Number(value=preset["batch_size"]),
            "learning_rate": gr.Number(value=preset["learning_rate"]),
            "save_iterations": gr.Number(value=preset["save_iterations"]),
            "preset_info": gr.Markdown(value=info_text)
        }

    def create_ui(self):
        """Create Gradio interface"""

        with gr.Blocks(title="🎥 Video Model Studio") as app:
            gr.Markdown("# 🎥 Video Model Studio")

            with gr.Tabs() as tabs:
                with gr.TabItem("1️⃣  Import", id="import_tab"):

                    with gr.Row():
                        gr.Markdown("## Automatic splitting and captioning")
                    
                    with gr.Row():
                        enable_automatic_video_split = gr.Checkbox(
                            label="Automatically split videos into smaller clips",
                            info="Note: a clip is a single camera shot, usually a few seconds",
                            value=True,
                            visible=True
                        )
                        enable_automatic_content_captioning = gr.Checkbox(
                            label="Automatically caption photos and videos",
                            info="Note: this uses LlaVA and takes some extra time to load and process",
                            value=False,
                            visible=True,
                        )
                        
                    with gr.Row():
                        with gr.Column(scale=3):
                            with gr.Row():
                                with gr.Column():
                                    gr.Markdown("## Import video files")
                                    gr.Markdown("You can upload either:")
                                    gr.Markdown("- A single MP4 video file")
                                    gr.Markdown("- A ZIP archive containing multiple videos and optional caption files")
                                    gr.Markdown("For ZIP files: Create a folder containing videos (name is not important) and optional caption files with the same name (eg. `some_video.txt` for `some_video.mp4`)")
                                        
                            with gr.Row():
                                files = gr.Files(
                                    label="Upload Images, Videos or ZIP",
                                    #file_count="multiple",
                                    file_types=[".jpg", ".jpeg", ".png", ".webp", ".webp", ".avif", ".heic", ".mp4", ".zip"],
                                    type="filepath"
                                )
               
                        with gr.Column(scale=3):
                            with gr.Row():
                                with gr.Column():
                                    gr.Markdown("## Import a YouTube video")
                                    gr.Markdown("You can also use a YouTube video as reference, by pasting its URL here:")

                            with gr.Row():
                                youtube_url = gr.Textbox(
                                    label="Import YouTube Video",
                                    placeholder="https://www.youtube.com/watch?v=..."
                                )
                            with gr.Row():
                                youtube_download_btn = gr.Button("Download YouTube Video", variant="secondary")
                    with gr.Row():
                        import_status = gr.Textbox(label="Status", interactive=False)


                with gr.TabItem("2️⃣  Split", id="split_tab"):
                    with gr.Row():
                        split_title = gr.Markdown("## Splitting of 0 videos (0 bytes)")
                    
                    with gr.Row():
                        with gr.Column():
                            detect_btn = gr.Button("Split videos into single-camera shots", variant="primary")
                            detect_status = gr.Textbox(label="Status", interactive=False)

                        with gr.Column():

                            video_list = gr.Dataframe(
                                headers=["name", "status"],
                                label="Videos to split",
                                interactive=False,
                                wrap=True,
                                #selection_mode="cell"  # Enable cell selection
                            )
                            
         
                with gr.TabItem("3️⃣  Caption"):
                    with gr.Row():
                        caption_title = gr.Markdown("## Captioning of 0 files (0 bytes)")
                        
                    with gr.Row():
                    
                        with gr.Column():
                            with gr.Row():
                                custom_prompt_prefix = gr.Textbox(
                                    scale=3,
                                    label='Prefix to add to ALL captions (eg. "In the style of TOK, ")',
                                    placeholder="In the style of TOK, ",
                                    lines=2,
                                    value=DEFAULT_PROMPT_PREFIX
                                )
                                captioning_bot_instructions = gr.Textbox(
                                    scale=6,
                                    label="System instructions for the automatic captioning model",
                                    placeholder="Please generate a full description of...",
                                    lines=5,
                                    value=DEFAULT_CAPTIONING_BOT_INSTRUCTIONS
                                )
                            with gr.Row():
                                run_autocaption_btn = gr.Button(
                                    "Automatically fill missing captions",
                                    variant="primary"  # Makes it green by default
                                )
                                copy_files_to_training_dir_btn = gr.Button(
                                    "Copy assets to training directory",
                                    variant="primary"  # Makes it green by default
                                )
                                stop_autocaption_btn = gr.Button(
                                    "Stop Captioning",
                                    variant="stop",  # Red when enabled
                                    interactive=False  # Disabled by default
                                )

                    with gr.Row():
                        with gr.Column():
                            training_dataset = gr.Dataframe(
                                headers=["name", "status"],
                                interactive=False,
                                wrap=True,
                                value=self.list_training_files_to_caption(),
                                row_count=10,  # Optional: set a reasonable row count
                                #selection_mode="cell" 
                            )

                        with gr.Column():
                            preview_video = gr.Video(
                                label="Video Preview",
                                interactive=False,
                                visible=False
                            )
                            preview_image = gr.Image(
                                label="Image Preview",
                                interactive=False,
                                visible=False
                            )
                            preview_caption = gr.Textbox(
                                label="Caption",
                                lines=6,
                                interactive=True
                            )
                            save_caption_btn = gr.Button("Save Caption")
                            preview_status = gr.Textbox(
                                label="Status",
                                interactive=False,
                                visible=True
                            )

                with gr.TabItem("4️⃣  Train"):
                    with gr.Row():
                        with gr.Column():

                            with gr.Row():
                                train_title = gr.Markdown("## 0 files available for training (0 bytes)")

                            with gr.Row():
                                with gr.Column():
                                    training_preset = gr.Dropdown(
                                        choices=list(TRAINING_PRESETS.keys()),
                                        label="Training Preset",
                                        value=list(TRAINING_PRESETS.keys())[0]
                                    )
                                preset_info = gr.Markdown()

                            with gr.Row():
                                with gr.Column():
                                    model_type = gr.Dropdown(
                                        choices=list(MODEL_TYPES.keys()),
                                        label="Model Type",
                                        value=list(MODEL_TYPES.keys())[0]
                                    )
                                model_info = gr.Markdown(
                                    value=self.get_model_info(list(MODEL_TYPES.keys())[0])
                                )

                            with gr.Row():
                                lora_rank = gr.Dropdown(
                                    label="LoRA Rank",
                                    choices=["16", "32", "64", "128", "256"],
                                    value="128",
                                    type="value"
                                )
                                lora_alpha = gr.Dropdown(
                                    label="LoRA Alpha",
                                    choices=["16", "32", "64", "128", "256"],
                                    value="128",
                                    type="value"
                                )
                            with gr.Row():
                                num_epochs = gr.Number(
                                    label="Number of Epochs",
                                    value=70,
                                    minimum=1,
                                    precision=0
                                )
                                batch_size = gr.Number(
                                    label="Batch Size",
                                    value=1,
                                    minimum=1,
                                    precision=0
                                )
                            with gr.Row():
                                learning_rate = gr.Number(
                                    label="Learning Rate",
                                    value=2e-5,
                                    minimum=1e-7
                                )
                                save_iterations = gr.Number(
                                    label="Save checkpoint every N iterations",
                                    value=500,
                                    minimum=50,
                                    precision=0,
                                    info="Model will be saved periodically after these many steps"
                                )
                        
                        with gr.Column():
                            with gr.Row():
                                start_btn = gr.Button(
                                    "Start Training",
                                    variant="primary",
                                    interactive=not ASK_USER_TO_DUPLICATE_SPACE
                                )
                                pause_resume_btn = gr.Button(
                                    "Resume Training",
                                    variant="secondary",
                                    interactive=False
                                )
                                stop_btn = gr.Button(
                                    "Stop Training",
                                    variant="stop",
                                    interactive=False
                                )

                            with gr.Row():
                                with gr.Column():
                                    status_box = gr.Textbox(
                                        label="Training Status",
                                        interactive=False,
                                        lines=4
                                    )
                                    with gr.Accordion("See training logs"):
                                        log_box = gr.TextArea(
                                            label="Finetrainers output (see HF Space logs for more details)",
                                            interactive=False,
                                            lines=40,
                                            max_lines=200,
                                            autoscroll=True
                                        )

                with gr.TabItem("5️⃣  Manage"):

                    with gr.Column():
                        with gr.Row():
                            with gr.Column():
                                gr.Markdown("## Publishing")
                                gr.Markdown("You model can be pushed to Hugging Face (this will use HF_API_TOKEN)")

                                with gr.Row():

                                    with gr.Column():
                                        repo_id = gr.Textbox(
                                            label="HuggingFace Model Repository",
                                            placeholder="username/model-name",
                                            info="The repository will be created if it doesn't exist"
                                        )
                                        gr.Checkbox(label="Check this to make your model public (ie. visible and downloadable by anyone)", info="You model is private by default"),
                                        global_stop_btn = gr.Button(
                                            "Push my model",
                                            #variant="stop"
                                        )

                        
                        with gr.Row():
                            with gr.Column():
                                with gr.Row():
                                    with gr.Column():
                                        gr.Markdown("## Storage management")
                                        with gr.Row():
                                            download_dataset_btn = gr.DownloadButton(
                                                "Download dataset",
                                                variant="secondary",
                                                size="lg"
                                            )
                                            download_model_btn = gr.DownloadButton(
                                                "Download model",
                                                variant="secondary",
                                                size="lg"
                                            )


                                with gr.Row():
                                    global_stop_btn = gr.Button(
                                        "Stop everything and delete my data",
                                        variant="stop"
                                    )
                                    global_status = gr.Textbox(
                                        label="Global Status",
                                        interactive=False,
                                        visible=False
                                    )
    

            
            # Event handlers
            def update_model_info(model):
                params = self.get_default_params(MODEL_TYPES[model])
                info = self.get_model_info(MODEL_TYPES[model])
                return {
                    model_info: info,
                    num_epochs: params["num_epochs"],
                    batch_size: params["batch_size"],
                    learning_rate: params["learning_rate"],
                    save_iterations: params["save_iterations"]
                }
            
            def validate_repo(repo_id: str) -> dict:
                validation = validate_model_repo(repo_id)
                if validation["error"]:
                    return gr.update(value=repo_id, error=validation["error"])
                return gr.update(value=repo_id, error=None)
            
            # Connect events 
            model_type.change(
                fn=update_model_info,
                inputs=[model_type],
                outputs=[model_info, num_epochs, batch_size, learning_rate, save_iterations]
            )

            async def on_import_success(enable_splitting, enable_automatic_content_captioning, prompt_prefix):
                videos = self.list_unprocessed_videos()
                # If scene detection isn't already running and there are videos to process,
                # and auto-splitting is enabled, start the detection
                if videos and not self.splitter.is_processing() and enable_splitting:
                    await self.start_scene_detection(enable_splitting)
                    msg = "Starting automatic scene detection..."
                else:
                    # Just copy files without splitting if auto-split disabled
                    for video_file in VIDEOS_TO_SPLIT_PATH.glob("*.mp4"):
                        await self.splitter.process_video(video_file, enable_splitting=False)
                    msg = "Copying videos without splitting..."
                
                copy_files_to_training_dir(prompt_prefix)

                # Start auto-captioning if enabled
                if enable_automatic_content_captioning:
                    await self.start_caption_generation(
                        DEFAULT_CAPTIONING_BOT_INSTRUCTIONS,
                        prompt_prefix
                    )
                
                return {
                    tabs: gr.Tabs(selected="split_tab"),
                    video_list: videos,
                    detect_status: msg
                }


            async def update_titles_after_import(enable_splitting, enable_automatic_content_captioning, prompt_prefix):
                """Handle post-import updates including titles"""
                import_result = await on_import_success(enable_splitting, enable_automatic_content_captioning, prompt_prefix)
                titles = self.update_titles()
                return (*import_result, *titles)

            files.upload(
                fn=lambda x: self.importer.process_uploaded_files(x),
                inputs=[files],
                outputs=[import_status]
            ).success(
                fn=update_titles_after_import,
                inputs=[enable_automatic_video_split, enable_automatic_content_captioning, custom_prompt_prefix],
                outputs=[
                    tabs, video_list, detect_status,
                    split_title, caption_title, train_title
                ]
            )
            
            youtube_download_btn.click(
                fn=self.importer.download_youtube_video,
                inputs=[youtube_url],
                outputs=[import_status]
            ).success(
                fn=on_import_success,
                inputs=[enable_automatic_video_split, enable_automatic_content_captioning, custom_prompt_prefix],
                outputs=[tabs, video_list, detect_status]
            )

            # Scene detection events
            detect_btn.click(
                fn=self.start_scene_detection,
                inputs=[enable_automatic_video_split],
                outputs=[detect_status]
            )


            # Update button states based on captioning status
            def update_button_states(is_running):
                return {
                    run_autocaption_btn: gr.Button(
                        interactive=not is_running,
                        variant="secondary" if is_running else "primary",
                    ),
                    stop_autocaption_btn: gr.Button(
                        interactive=is_running,
                        variant="secondary",
                    ),
                }
            
            run_autocaption_btn.click(
                fn=self.start_caption_generation,
                inputs=[captioning_bot_instructions, custom_prompt_prefix],
                outputs=[training_dataset],
            ).then(
                fn=lambda: update_button_states(True),
                outputs=[run_autocaption_btn, stop_autocaption_btn]
            )

            copy_files_to_training_dir_btn.click(
                fn=self.copy_files_to_training_dir,
                inputs=[custom_prompt_prefix]
            )
            
            stop_autocaption_btn.click(
                fn=lambda: (self.captioner.stop_captioning() if self.captioner else None, update_button_states(False)),
                outputs=[run_autocaption_btn, stop_autocaption_btn]
            )

            training_dataset.select(
                fn=self.handle_training_dataset_select,
                outputs=[preview_image, preview_video, preview_caption, preview_status]
            )

            save_caption_btn.click(
                fn=self.save_caption_changes,
                inputs=[preview_caption, preview_image, preview_video, custom_prompt_prefix],
                outputs=[preview_status]
            ).success(
                fn=self.list_training_files_to_caption,
                outputs=[training_dataset]
            )
            
            training_preset.change(
                fn=self.update_training_params,
                inputs=[training_preset],
                outputs=[
                    model_type, lora_rank, lora_alpha, 
                    num_epochs, batch_size, learning_rate, 
                    save_iterations, preset_info
                ]
            )

            # Training control events
            start_btn.click(
                fn=lambda preset, model_type, *args: (
                    self.log_parser.reset(),
                    self.trainer.start_training(
                        MODEL_TYPES[model_type],
                        *args,
                        preset_name=preset
                    )
                ),
                inputs=[
                    training_preset,
                    model_type,
                    lora_rank,
                    lora_alpha,
                    num_epochs,
                    batch_size,
                    learning_rate,
                    save_iterations,
                    repo_id
                ],
                outputs=[status_box, log_box]
            ).success(
                fn=self.get_latest_status_message_logs_and_button_labels,
                outputs=[status_box, log_box, start_btn, stop_btn, pause_resume_btn]
            )

            pause_resume_btn.click(
                fn=self.handle_pause_resume,
                outputs=[status_box, log_box, start_btn, stop_btn, pause_resume_btn]
            )

            stop_btn.click(
                fn=self.handle_stop,
                outputs=[status_box, log_box, start_btn, stop_btn, pause_resume_btn]
            )

            def handle_global_stop():
                result = self.stop_all_and_clear()
                # Update all relevant UI components
                status = result["status"]
                details = "\n".join(f"{k}: {v}" for k, v in result["details"].items())
                full_status = f"{status}\n\nDetails:\n{details}"
                
                # Get fresh lists after cleanup
                videos = self.splitter.list_unprocessed_videos()
                clips = self.list_training_files_to_caption()
                
                return {
                    global_status: gr.update(value=full_status, visible=True),
                    video_list: videos,
                    training_dataset: clips,
                    status_box: "Training stopped and data cleared",
                    log_box: "",
                    detect_status: "Scene detection stopped",
                    import_status: "All data cleared",
                    preview_status: "Captioning stopped"
                }
            
            download_dataset_btn.click(
                fn=self.trainer.create_training_dataset_zip,
                outputs=[download_dataset_btn]
            )

            download_model_btn.click(
                fn=self.trainer.get_model_output_safetensors,
                outputs=[download_model_btn]
            )

            global_stop_btn.click(
                fn=handle_global_stop,
                outputs=[
                    global_status,
                    video_list,
                    training_dataset,
                    status_box,
                    log_box,
                    detect_status,
                    import_status,
                    preview_status
                ]
            )

            # Auto-refresh timers
            app.load(
                fn=lambda: (
                    self.refresh_dataset()
                ),
                outputs=[
                    video_list, training_dataset
                ]
            )
            
            timer = gr.Timer(value=1)
            timer.tick(
                fn=lambda: (
                    self.get_latest_status_message_logs_and_button_labels()
                ),
                outputs=[
                    status_box,
                    log_box,
                    start_btn,
                    stop_btn,
                    pause_resume_btn
                ]
            )

            timer = gr.Timer(value=5)
            timer.tick(
                fn=lambda: (
                    self.refresh_dataset()
                ),
                outputs=[
                    video_list, training_dataset
                ]
            )

            timer = gr.Timer(value=6)
            timer.tick(
                fn=lambda: self.update_titles(),
                outputs=[
                    split_title, caption_title, train_title
                ]
            )

        return app

def create_app():
    if ASK_USER_TO_DUPLICATE_SPACE:
        with gr.Blocks() as app:
            gr.Markdown("""# Finetrainers UI

This Hugging Face space needs to be duplicated to your own billing account to work.

Click the 'Duplicate Space' button at the top of the page to create your own copy.

It is recommended to use a Nvidia L40S and a persistent storage space.
To avoid overpaying for your space, you can configure the auto-sleep settings to fit your personal budget.""")
        return app

    ui = VideoTrainerUI()
    return ui.create_ui()

if __name__ == "__main__":
    app = create_app()

    allowed_paths = [
        str(STORAGE_PATH),  # Base storage
        str(VIDEOS_TO_SPLIT_PATH),
        str(STAGING_PATH), 
        str(TRAINING_PATH),
        str(TRAINING_VIDEOS_PATH),
        str(MODEL_PATH),
        str(OUTPUT_PATH)
    ]
    app.queue(default_concurrency_limit=1).launch(
        server_name="0.0.0.0",
        allowed_paths=allowed_paths
    )