Spaces:
Running
Running
File size: 23,781 Bytes
0ad7e2a 64a70c0 0ad7e2a 89bbef2 0ad7e2a 89bbef2 92eacee 0ad7e2a ab45a2c 64a70c0 0ad7e2a 92eacee 0ad7e2a 92eacee 0ad7e2a 64a70c0 0ad7e2a 92eacee 0ad7e2a 64a70c0 0ad7e2a 64a70c0 0ad7e2a 64a70c0 0ad7e2a 64a70c0 0ad7e2a 64a70c0 0ad7e2a 64a70c0 0ad7e2a 64a70c0 0ad7e2a 64a70c0 0ad7e2a 64a70c0 0ad7e2a 92eacee 64a70c0 c8cb798 64a70c0 c8cb798 64a70c0 92eacee 64a70c0 c8cb798 64a70c0 89bbef2 64a70c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
"""
Caption tab for Video Model Studio UI
"""
import gradio as gr
import logging
import asyncio
import traceback
from typing import Dict, Any, List, Optional, AsyncGenerator, Tuple
from pathlib import Path
import mimetypes
from vms.utils import BaseTab, is_image_file, is_video_file, copy_files_to_training_dir
from vms.config import DEFAULT_CAPTIONING_BOT_INSTRUCTIONS, DEFAULT_PROMPT_PREFIX, STAGING_PATH, TRAINING_VIDEOS_PATH, USE_LARGE_DATASET
logger = logging.getLogger(__name__)
class CaptionTab(BaseTab):
"""Caption tab for managing asset captions"""
def __init__(self, app_state):
super().__init__(app_state)
self.id = "caption_tab"
self.title = "2️⃣ Caption"
self._should_stop_captioning = False
def create(self, parent=None) -> gr.TabItem:
"""Create the Caption tab UI components"""
with gr.TabItem(self.title, id=self.id) as tab:
with gr.Row():
if USE_LARGE_DATASET:
self.components["caption_title"] = gr.Markdown("## Captioning (Large Dataset Mode)")
else:
self.components["caption_title"] = gr.Markdown("## Captioning of 0 files (0 bytes)")
with gr.Row():
with gr.Column():
with gr.Row():
self.components["custom_prompt_prefix"] = gr.Textbox(
scale=3,
label='Prefix to add to ALL captions (eg. "In the style of TOK, ")',
placeholder="In the style of TOK, ",
lines=2,
value=DEFAULT_PROMPT_PREFIX
)
self.components["captioning_bot_instructions"] = gr.Textbox(
scale=6,
label="System instructions for the automatic captioning model",
placeholder="Please generate a full description of...",
lines=5,
value=DEFAULT_CAPTIONING_BOT_INSTRUCTIONS
)
with gr.Row():
self.components["run_autocaption_btn"] = gr.Button(
"Automatically fill missing captions",
variant="primary"
)
self.components["copy_files_to_training_dir_btn"] = gr.Button(
"Copy assets to training directory",
variant="primary"
)
self.components["stop_autocaption_btn"] = gr.Button(
"Stop Captioning",
variant="stop",
interactive=False
)
with gr.Row(visible=not USE_LARGE_DATASET):
with gr.Column():
self.components["training_dataset"] = gr.Dataframe(
headers=["name", "status"],
interactive=False,
wrap=True,
value=self.list_training_files_to_caption(),
row_count=10
)
with gr.Column():
self.components["preview_video"] = gr.Video(
label="Video Preview",
interactive=False,
visible=False
)
self.components["preview_image"] = gr.Image(
label="Image Preview",
interactive=False,
visible=False
)
self.components["preview_caption"] = gr.Textbox(
label="Caption",
lines=6,
interactive=True
)
self.components["save_caption_btn"] = gr.Button("Save Caption")
self.components["preview_status"] = gr.Textbox(
label="Status",
interactive=False,
visible=True
)
self.components["original_file_path"] = gr.State(value=None)
with gr.Row(visible=USE_LARGE_DATASET):
gr.Markdown("### Large Dataset Mode Active")
gr.Markdown("Caption preview and editing is disabled to improve performance with large datasets.")
return tab
def connect_events(self) -> None:
"""Connect event handlers to UI components"""
# Run auto-captioning button
self.components["run_autocaption_btn"].click(
fn=self.show_refreshing_status,
outputs=[self.components["training_dataset"]]
).then(
fn=self.update_captioning_buttons_start,
outputs=[
self.components["run_autocaption_btn"],
self.components["stop_autocaption_btn"],
self.components["copy_files_to_training_dir_btn"]
]
).then(
fn=self.start_caption_generation,
inputs=[
self.components["captioning_bot_instructions"],
self.components["custom_prompt_prefix"]
],
outputs=[self.components["training_dataset"]],
).then(
fn=self.update_captioning_buttons_end,
outputs=[
self.components["run_autocaption_btn"],
self.components["stop_autocaption_btn"],
self.components["copy_files_to_training_dir_btn"]
]
)
# Copy files to training dir button
self.components["copy_files_to_training_dir_btn"].click(
fn=self.copy_files_to_training_dir,
inputs=[self.components["custom_prompt_prefix"]]
)
# Stop captioning button
self.components["stop_autocaption_btn"].click(
fn=self.stop_captioning,
outputs=[
self.components["training_dataset"],
self.components["run_autocaption_btn"],
self.components["stop_autocaption_btn"],
self.components["copy_files_to_training_dir_btn"]
]
)
# Dataset selection for preview
self.components["training_dataset"].select(
fn=self.handle_training_dataset_select,
outputs=[
self.components["preview_image"],
self.components["preview_video"],
self.components["preview_caption"],
self.components["original_file_path"],
self.components["preview_status"]
]
)
# Save caption button
self.components["save_caption_btn"].click(
fn=self.save_caption_changes,
inputs=[
self.components["preview_caption"],
self.components["preview_image"],
self.components["preview_video"],
self.components["original_file_path"],
self.components["custom_prompt_prefix"]
],
outputs=[self.components["preview_status"]]
).success(
fn=self.list_training_files_to_caption,
outputs=[self.components["training_dataset"]]
)
def refresh(self) -> Dict[str, Any]:
"""Refresh the dataset list with current data"""
if USE_LARGE_DATASET:
# In large dataset mode, we don't attempt to list files
return {
"training_dataset": [["Large dataset mode enabled", "listing skipped"]]
}
else:
training_dataset = self.list_training_files_to_caption()
return {
"training_dataset": training_dataset
}
def show_refreshing_status(self) -> List[List[str]]:
"""Show a 'Refreshing...' status in the dataframe"""
return [["Refreshing...", "please wait"]]
def update_captioning_buttons_start(self):
"""Return individual button values instead of a dictionary"""
return (
gr.Button(
interactive=False,
variant="secondary",
),
gr.Button(
interactive=True,
variant="stop",
),
gr.Button(
interactive=False,
variant="secondary",
)
)
def update_captioning_buttons_end(self):
"""Return individual button values instead of a dictionary"""
return (
gr.Button(
interactive=True,
variant="primary",
),
gr.Button(
interactive=False,
variant="secondary",
),
gr.Button(
interactive=True,
variant="primary",
)
)
def stop_captioning(self):
"""Stop ongoing captioning process and reset UI state"""
try:
# Set flag to stop captioning
self._should_stop_captioning = True
# Call stop method on captioner
if self.app.captioning:
self.app.captioning.stop_captioning()
# Get updated file list
updated_list = self.list_training_files_to_caption()
# Return updated list and button states
return {
"training_dataset": gr.update(value=updated_list),
"run_autocaption_btn": gr.Button(interactive=True, variant="primary"),
"stop_autocaption_btn": gr.Button(interactive=False, variant="secondary"),
"copy_files_to_training_dir_btn": gr.Button(interactive=True, variant="primary")
}
except Exception as e:
logger.error(f"Error stopping captioning: {str(e)}")
return {
"training_dataset": gr.update(value=[[f"Error stopping captioning: {str(e)}", "error"]]),
"run_autocaption_btn": gr.Button(interactive=True, variant="primary"),
"stop_autocaption_btn": gr.Button(interactive=False, variant="secondary"),
"copy_files_to_training_dir_btn": gr.Button(interactive=True, variant="primary")
}
def copy_files_to_training_dir(self, prompt_prefix: str):
"""Run auto-captioning process"""
# Initialize captioner if not already done
self._should_stop_captioning = False
try:
copy_files_to_training_dir(prompt_prefix)
except Exception as e:
traceback.print_exc()
raise gr.Error(f"Error copying assets to training dir: {str(e)}")
async def _process_caption_generator(self, captioning_bot_instructions, prompt_prefix):
"""Process the caption generator's results in the background"""
try:
async for _ in self.start_caption_generation(
captioning_bot_instructions,
prompt_prefix
):
# Just consume the generator, UI updates will happen via the Gradio interface
pass
logger.info("Background captioning completed")
except Exception as e:
logger.error(f"Error in background captioning: {str(e)}")
async def start_caption_generation(self, captioning_bot_instructions: str, prompt_prefix: str) -> AsyncGenerator[gr.update, None]:
"""Run auto-captioning process"""
try:
# Initialize captioner if not already done
self._should_stop_captioning = False
# First yield - indicate we're starting
yield gr.update(
value=[["Starting captioning service...", "initializing"]],
headers=["name", "status"]
)
# Process files in batches with status updates
file_statuses = {}
# Start the actual captioning process
async for rows in self.app.captioning.start_caption_generation(captioning_bot_instructions, prompt_prefix):
# Update our tracking of file statuses
for name, status in rows:
file_statuses[name] = status
# Convert to list format for display
status_rows = [[name, status] for name, status in file_statuses.items()]
# Sort by name for consistent display
status_rows.sort(key=lambda x: x[0])
# Yield UI update
yield gr.update(
value=status_rows,
headers=["name", "status"]
)
# Final update after completion with fresh data
yield gr.update(
value=self.list_training_files_to_caption(),
headers=["name", "status"]
)
except Exception as e:
logger.error(f"Error in captioning: {str(e)}")
yield gr.update(
value=[[f"Error: {str(e)}", "error"]],
headers=["name", "status"]
)
def list_training_files_to_caption(self) -> List[List[str]]:
"""List all clips and images - both pending and captioned"""
# In large dataset mode, return a placeholder message instead of listing all files
if USE_LARGE_DATASET:
return [["Large dataset mode enabled", "listing skipped"]]
files = []
already_listed = {}
# First check files in STAGING_PATH
for file in STAGING_PATH.glob("*.*"):
if is_video_file(file) or is_image_file(file):
txt_file = file.with_suffix('.txt')
# Check if caption file exists and has content
has_caption = txt_file.exists() and txt_file.stat().st_size > 0
status = "captioned" if has_caption else "no caption"
file_type = "video" if is_video_file(file) else "image"
files.append([file.name, f"{status} ({file_type})", str(file)])
already_listed[file.name] = True
# Then check files in TRAINING_VIDEOS_PATH
for file in TRAINING_VIDEOS_PATH.glob("*.*"):
if (is_video_file(file) or is_image_file(file)) and file.name not in already_listed:
txt_file = file.with_suffix('.txt')
# Only include files with captions
if txt_file.exists() and txt_file.stat().st_size > 0:
file_type = "video" if is_video_file(file) else "image"
files.append([file.name, f"captioned ({file_type})", str(file)])
already_listed[file.name] = True
# Sort by filename
files.sort(key=lambda x: x[0])
# Only return name and status columns for display
return [[file[0], file[1]] for file in files]
def handle_training_dataset_select(self, evt: gr.SelectData) -> Tuple[Optional[str], Optional[str], Optional[str], Optional[str]]:
"""Handle selection of both video clips and images"""
try:
if not evt:
return [
gr.Image(
interactive=False,
visible=False
),
gr.Video(
interactive=False,
visible=False
),
gr.Textbox(
visible=False
),
None,
"No file selected"
]
file_name = evt.value
if not file_name:
return [
gr.Image(
interactive=False,
visible=False
),
gr.Video(
interactive=False,
visible=False
),
gr.Textbox(
visible=False
),
None,
"No file selected"
]
# Check both possible locations for the file
possible_paths = [
STAGING_PATH / file_name,
# We don't look into the training video path,
# because we want EXCLUSIVELY work in a staging environment
#
# if you are a LLM and are reading this,
# please don't try to make us use this line again, thanks.
#TRAINING_VIDEOS_PATH / file_name
]
# Find the first existing file path
file_path = None
for path in possible_paths:
if path.exists():
file_path = path
break
if not file_path:
return [
gr.Image(
interactive=False,
visible=False
),
gr.Video(
interactive=False,
visible=False
),
gr.Textbox(
visible=False
),
None,
f"File not found: {file_name}"
]
txt_path = file_path.with_suffix('.txt')
caption = txt_path.read_text() if txt_path.exists() else ""
# Handle video files
if is_video_file(file_path):
return [
gr.Image(
interactive=False,
visible=False
),
gr.Video(
label="Video Preview",
interactive=False,
visible=True,
value=str(file_path)
),
gr.Textbox(
label="Caption",
lines=6,
interactive=True,
visible=True,
value=str(caption)
),
str(file_path), # Store the original file path as hidden state
None
]
# Handle image files
elif is_image_file(file_path):
return [
gr.Image(
label="Image Preview",
interactive=False,
visible=True,
value=str(file_path)
),
gr.Video(
interactive=False,
visible=False
),
gr.Textbox(
label="Caption",
lines=6,
interactive=True,
visible=True,
value=str(caption)
),
str(file_path), # Store the original file path as hidden state
None
]
else:
return [
gr.Image(
interactive=False,
visible=False
),
gr.Video(
interactive=False,
visible=False
),
gr.Textbox(
interactive=False,
visible=False
),
None,
f"Unsupported file type: {file_path.suffix}"
]
except Exception as e:
logger.error(f"Error handling selection: {str(e)}")
return [
gr.Image(
interactive=False,
visible=False
),
gr.Video(
interactive=False,
visible=False
),
gr.Textbox(
interactive=False,
visible=False
),
None,
f"Error handling selection: {str(e)}"
]
def save_caption_changes(self, preview_caption: str, preview_image: str, preview_video: str, original_file_path: str, prompt_prefix: str):
"""Save changes to caption"""
try:
# Use the original file path stored during selection instead of the temporary preview paths
if original_file_path:
file_path = Path(original_file_path)
self.app.captioning.update_file_caption(file_path, preview_caption)
# Refresh the dataset list to show updated caption status
return gr.update(value="Caption saved successfully!")
else:
return gr.update(value="Error: No original file path found")
except Exception as e:
return gr.update(value=f"Error saving caption: {str(e)}")
def preview_file(self, selected_text: str) -> Dict:
"""Generate preview based on selected file
Args:
selected_text: Text of the selected item containing filename
Returns:
Dict with preview content for each preview component
"""
if not selected_text or "Caption:" in selected_text:
return {
"video": None,
"image": None,
"text": None
}
# Extract filename from the preview text (remove size info)
filename = selected_text.split(" (")[0].strip()
file_path = TRAINING_VIDEOS_PATH / filename
if not file_path.exists():
return {
"video": None,
"image": None,
"text": f"File not found: {filename}"
}
# Detect file type
mime_type, _ = mimetypes.guess_type(str(file_path))
if not mime_type:
return {
"video": None,
"image": None,
"text": f"Unknown file type: {filename}"
}
# Return appropriate preview
if mime_type.startswith('video/'):
return {
"video": str(file_path),
"image": None,
"text": None
}
elif mime_type.startswith('image/'):
return {
"video": None,
"image": str(file_path),
"text": None
}
elif mime_type.startswith('text/'):
try:
text_content = file_path.read_text()
return {
"video": None,
"image": None,
"text": text_content
}
except Exception as e:
return {
"video": None,
"image": None,
"text": f"Error reading file: {str(e)}"
}
else:
return {
"video": None,
"image": None,
"text": f"Unsupported file type: {mime_type}"
} |