Spaces:
Running
Running
File size: 16,276 Bytes
0ad7e2a 64a70c0 0ad7e2a 89bbef2 64a70c0 92eacee 64a70c0 0ad7e2a ab45a2c 0ad7e2a 89bbef2 ed18efe 89bbef2 0ad7e2a 89bbef2 ed18efe 89bbef2 92eacee 89bbef2 92eacee 89bbef2 ed18efe 89bbef2 ed18efe 89bbef2 0ad7e2a 89bbef2 0ad7e2a 89bbef2 ed18efe 89bbef2 a3e57a3 ed18efe a3e57a3 ed18efe a3e57a3 ed18efe a3e57a3 ed18efe a3e57a3 89bbef2 ed18efe 89bbef2 0ad7e2a 64a70c0 0ad7e2a c8cb798 0ad7e2a c8cb798 0ad7e2a a3e57a3 0ad7e2a 64a70c0 0ad7e2a 64a70c0 0ad7e2a 64a70c0 c8cb798 64a70c0 c8cb798 64a70c0 a3e57a3 64a70c0 c8cb798 64a70c0 c8cb798 64a70c0 c8cb798 64a70c0 c8cb798 64a70c0 c8cb798 64a70c0 c8cb798 64a70c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
"""
Manage tab for Video Model Studio UI
"""
import gradio as gr
import logging
import shutil
from pathlib import Path
from typing import Dict, Any, List, Optional
from vms.utils import BaseTab, validate_model_repo
from vms.config import (
HF_API_TOKEN, VIDEOS_TO_SPLIT_PATH, STAGING_PATH, TRAINING_VIDEOS_PATH,
TRAINING_PATH, MODEL_PATH, OUTPUT_PATH, LOG_FILE_PATH, USE_LARGE_DATASET
)
logger = logging.getLogger(__name__)
class ManageTab(BaseTab):
"""Manage tab for storage management and model publication"""
def __init__(self, app_state):
super().__init__(app_state)
self.id = "manage_tab"
self.title = "5οΈβ£ Storage"
def create(self, parent=None) -> gr.TabItem:
"""Create the Manage tab UI components"""
with gr.TabItem(self.title, id=self.id) as tab:
with gr.Row():
with gr.Column():
gr.Markdown("## π¦ Backup your model")
gr.Markdown("There is currently a bug, you might have to click multiple times to trigger a download.")
with gr.Row():
self.components["download_dataset_btn"] = gr.DownloadButton(
"π¦ Download training dataset (.zip)",
variant="secondary",
size="lg",
visible=not USE_LARGE_DATASET
)
# If we have a large dataset, display a message explaining why download is disabled
if USE_LARGE_DATASET:
gr.Markdown("π¦ Training dataset download disabled for large datasets")
self.components["download_model_btn"] = gr.DownloadButton(
"π§ Download weights (.safetensors)",
variant="secondary",
size="lg"
)
with gr.Row():
with gr.Column():
gr.Markdown("## π‘ Publish your model")
gr.Markdown("You model can be pushed to Hugging Face (this will use HF_API_TOKEN)")
with gr.Row():
with gr.Column():
self.components["repo_id"] = gr.Textbox(
label="HuggingFace Model Repository",
placeholder="username/model-name",
info="The repository will be created if it doesn't exist"
)
self.components["make_public"] = gr.Checkbox(
label="Check this to make your model public (ie. visible and downloadable by anyone)",
info="You model is private by default"
)
self.components["push_model_btn"] = gr.Button(
"Push my model"
)
with gr.Row():
with gr.Column():
gr.Markdown("## β»οΈ Delete your data")
gr.Markdown("Make sure you have made a backup first.")
gr.Markdown("If you are deleting because of a bug, remember you can use the Developer Mode on HF to inspect the working directory (in /data or .data)")
with gr.Row():
with gr.Column():
gr.Markdown("### π§½ Delete specific data")
gr.Markdown("You can selectively delete either the dataset and/or the last model data.")
with gr.Row():
with gr.Column(scale=1):
self.components["delete_dataset_btn"] = gr.Button(
"π¨ Delete dataset (images, video, captions)",
variant="secondary"
)
self.components["delete_dataset_status"] = gr.Textbox(
label="Delete Dataset Status",
interactive=False,
visible=False
)
with gr.Column(scale=1):
self.components["delete_model_btn"] = gr.Button(
"π¨ Delete model (checkpoints, weights, config)",
variant="secondary"
)
self.components["delete_model_status"] = gr.Textbox(
label="Delete Model Status",
interactive=False,
visible=False
)
with gr.Row():
with gr.Column():
gr.Markdown("### β’οΈ Nuke all project data")
gr.Markdown("This will nuke the original dataset (all images, videos and captions), the training dataset, and the model outputs (weights, checkpoints, settings). So use with care!")
with gr.Row():
self.components["global_stop_btn"] = gr.Button(
"π¨ Delete all project data and models (are you sure?!)",
variant="stop"
)
self.components["global_status"] = gr.Textbox(
label="Global Status",
interactive=False,
visible=False
)
return tab
def connect_events(self) -> None:
"""Connect event handlers to UI components"""
# Repository ID validation
self.components["repo_id"].change(
fn=self.validate_repo,
inputs=[self.components["repo_id"]],
outputs=[self.components["repo_id"]]
)
# Download buttons
self.components["download_dataset_btn"].click(
fn=self.app.training.create_training_dataset_zip,
outputs=[self.components["download_dataset_btn"]]
)
self.components["download_model_btn"].click(
fn=self.app.training.get_model_output_safetensors,
outputs=[self.components["download_model_btn"]]
)
# New delete dataset button
self.components["delete_dataset_btn"].click(
fn=self.delete_dataset,
outputs=[
self.components["delete_dataset_status"],
self.app.tabs["caption_tab"].components["training_dataset"]
]
)
# New delete model button
self.components["delete_model_btn"].click(
fn=self.delete_model,
outputs=[
self.components["delete_model_status"],
self.app.tabs["train_tab"].components["status_box"]
]
)
# Global stop button
self.components["global_stop_btn"].click(
fn=self.handle_global_stop,
outputs=[
self.components["global_status"],
self.app.tabs["caption_tab"].components["training_dataset"],
self.app.tabs["train_tab"].components["status_box"],
self.app.tabs["train_tab"].components["log_box"],
self.app.tabs["import_tab"].components["import_status"],
self.app.tabs["caption_tab"].components["preview_status"]
]
)
# Push model button
self.components["push_model_btn"].click(
fn=lambda repo_id: self.upload_to_hub(repo_id),
inputs=[self.components["repo_id"]],
outputs=[self.components["global_status"]]
)
def validate_repo(self, repo_id: str) -> gr.update:
"""Validate repository ID for HuggingFace Hub"""
validation = validate_model_repo(repo_id)
if validation["error"]:
return gr.update(value=repo_id, error=validation["error"])
return gr.update(value=repo_id, error=None)
def upload_to_hub(self, repo_id: str) -> str:
"""Upload model to HuggingFace Hub"""
if not repo_id:
return "Error: Repository ID is required"
# Validate repository name
validation = validate_model_repo(repo_id)
if validation["error"]:
return f"Error: {validation['error']}"
# Check if we have a model to upload
if not self.app.training.get_model_output_safetensors():
return "Error: No model found to upload"
# Upload model to hub
success = self.app.training.upload_to_hub(OUTPUT_PATH, repo_id)
if success:
return f"Successfully uploaded model to {repo_id}"
else:
return f"Failed to upload model to {repo_id}"
def delete_dataset(self):
"""Delete dataset files (images, videos, captions)"""
status_messages = {}
try:
# Stop captioning if running
if self.app.captioning:
self.app.captioning.stop_captioning()
status_messages["captioning"] = "Captioning stopped"
# Stop scene detection if running
if self.app.splitting.is_processing():
self.app.splitting.processing = False
status_messages["splitting"] = "Scene detection stopped"
# Clear dataset directories
for path in [VIDEOS_TO_SPLIT_PATH, STAGING_PATH, TRAINING_VIDEOS_PATH, TRAINING_PATH]:
if path.exists():
try:
shutil.rmtree(path)
path.mkdir(parents=True, exist_ok=True)
except Exception as e:
status_messages[f"clear_{path.name}"] = f"Error clearing {path.name}: {str(e)}"
else:
status_messages[f"clear_{path.name}"] = f"Cleared {path.name}"
# Reset any relevant persistent state
self.app.tabs["caption_tab"]._should_stop_captioning = True
self.app.splitting.processing = False
# Format response
details = "\n".join(f"{k}: {v}" for k, v in status_messages.items())
message = f"Dataset deleted successfully\n\nDetails:\n{details}"
# Get fresh lists after cleanup
clips = self.app.tabs["caption_tab"].list_training_files_to_caption()
return gr.update(value=message, visible=True), clips
except Exception as e:
error_message = f"Error deleting dataset: {str(e)}\n\nDetails:\n{status_messages}"
return gr.update(value=error_message, visible=True), self.app.tabs["caption_tab"].list_training_files_to_caption()
def delete_model(self):
"""Delete model files (checkpoints, weights, configuration)"""
status_messages = {}
try:
# Stop training if running
if self.app.training.is_training_running():
training_result = self.app.training.stop_training()
status_messages["training"] = training_result["status"]
# Clear model output directory
if OUTPUT_PATH.exists():
try:
shutil.rmtree(OUTPUT_PATH)
OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
except Exception as e:
status_messages[f"clear_{OUTPUT_PATH.name}"] = f"Error clearing {OUTPUT_PATH.name}: {str(e)}"
else:
status_messages[f"clear_{OUTPUT_PATH.name}"] = f"Cleared {OUTPUT_PATH.name}"
# Properly close logging before clearing log file
if self.app.training.file_handler:
self.app.training.file_handler.close()
logger.removeHandler(self.app.training.file_handler)
self.app.training.file_handler = None
if LOG_FILE_PATH.exists():
LOG_FILE_PATH.unlink()
# Reset training UI state
self.app.training.setup_logging()
# Format response
details = "\n".join(f"{k}: {v}" for k, v in status_messages.items())
message = f"Model deleted successfully\n\nDetails:\n{details}"
return gr.update(value=message, visible=True), "Model files have been deleted"
except Exception as e:
error_message = f"Error deleting model: {str(e)}\n\nDetails:\n{status_messages}"
return gr.update(value=error_message, visible=True), f"Error deleting model: {str(e)}"
def handle_global_stop(self):
"""Handle the global stop button click"""
result = self.stop_all_and_clear()
# Format the details for display
status = result["status"]
details = "\n".join(f"{k}: {v}" for k, v in result["details"].items())
full_status = f"{status}\n\nDetails:\n{details}"
# Get fresh lists after cleanup
clips = self.app.tabs["caption_tab"].list_training_files_to_caption()
return {
self.components["global_status"]: gr.update(value=full_status, visible=True),
self.app.tabs["caption_tab"].components["training_dataset"]: clips,
self.app.tabs["train_tab"].components["status_box"]: "Training stopped and data cleared",
self.app.tabs["train_tab"].components["log_box"]: "",
self.app.tabs["import_tab"].components["import_status"]: "All data cleared",
self.app.tabs["caption_tab"].components["preview_status"]: "Captioning stopped"
}
def stop_all_and_clear(self) -> Dict[str, str]:
"""Stop all running processes and clear data
Returns:
Dict with status messages for different components
"""
status_messages = {}
try:
# Stop training if running
if self.app.training.is_training_running():
training_result = self.app.training.stop_training()
status_messages["training"] = training_result["status"]
# Stop captioning if running
if self.app.captioning:
self.app.captioning.stop_captioning()
status_messages["captioning"] = "Captioning stopped"
# Stop scene detection if running
if self.app.splitting.is_processing():
self.app.splitting.processing = False
status_messages["splitting"] = "Scene detection stopped"
# Properly close logging before clearing log file
if self.app.training.file_handler:
self.app.training.file_handler.close()
logger.removeHandler(self.app.training.file_handler)
self.app.training.file_handler = None
if LOG_FILE_PATH.exists():
LOG_FILE_PATH.unlink()
# Clear all data directories
for path in [VIDEOS_TO_SPLIT_PATH, STAGING_PATH, TRAINING_VIDEOS_PATH, TRAINING_PATH,
MODEL_PATH, OUTPUT_PATH]:
if path.exists():
try:
shutil.rmtree(path)
path.mkdir(parents=True, exist_ok=True)
except Exception as e:
status_messages[f"clear_{path.name}"] = f"Error clearing {path.name}: {str(e)}"
else:
status_messages[f"clear_{path.name}"] = f"Cleared {path.name}"
# Reset any persistent state
self.app.tabs["caption_tab"]._should_stop_captioning = True
self.app.splitting.processing = False
# Recreate logging setup
self.app.training.setup_logging()
return {
"status": "All processes stopped and data cleared",
"details": status_messages
}
except Exception as e:
return {
"status": f"Error during cleanup: {str(e)}",
"details": status_messages
} |