Spaces:
Running
Running
""" | |
Train tab for Video Model Studio UI | |
""" | |
import gradio as gr | |
import logging | |
from typing import Dict, Any, List, Optional, Tuple | |
from pathlib import Path | |
from .base_tab import BaseTab | |
from ..config import TRAINING_PRESETS, OUTPUT_PATH, MODEL_TYPES, ASK_USER_TO_DUPLICATE_SPACE, SMALL_TRAINING_BUCKETS | |
from ..utils import TrainingLogParser | |
logger = logging.getLogger(__name__) | |
class TrainTab(BaseTab): | |
"""Train tab for model training""" | |
def __init__(self, app_state): | |
super().__init__(app_state) | |
self.id = "train_tab" | |
self.title = "4️⃣ Train" | |
def create(self, parent=None) -> gr.TabItem: | |
"""Create the Train tab UI components""" | |
with gr.TabItem(self.title, id=self.id) as tab: | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
self.components["train_title"] = gr.Markdown("## 0 files available for training (0 bytes)") | |
with gr.Row(): | |
with gr.Column(): | |
self.components["training_preset"] = gr.Dropdown( | |
choices=list(TRAINING_PRESETS.keys()), | |
label="Training Preset", | |
value=list(TRAINING_PRESETS.keys())[0] | |
) | |
self.components["preset_info"] = gr.Markdown() | |
with gr.Row(): | |
with gr.Column(): | |
self.components["model_type"] = gr.Dropdown( | |
choices=list(MODEL_TYPES.keys()), | |
label="Model Type", | |
value=list(MODEL_TYPES.keys())[0] | |
) | |
with gr.Column(): | |
self.components["training_type"] = gr.Dropdown( | |
choices=list(TRAINING_TYPES.keys()), | |
label="Training Type", | |
value=list(TRAINING_TYPES.keys())[0] | |
) | |
with gr.Row(): | |
self.components["model_info"] = gr.Markdown( | |
value=self.get_model_info(list(MODEL_TYPES.keys())[0], list(TRAINING_TYPES.keys())[0]) | |
) | |
# LoRA specific parameters (will show/hide based on training type) | |
with gr.Row(visible=True) as lora_params_row: | |
self.components["lora_params_row"] = lora_params_row | |
self.components["lora_rank"] = gr.Dropdown( | |
label="LoRA Rank", | |
choices=["16", "32", "64", "128", "256", "512", "1024"], | |
value="128", | |
type="value" | |
) | |
self.components["lora_alpha"] = gr.Dropdown( | |
label="LoRA Alpha", | |
choices=["16", "32", "64", "128", "256", "512", "1024"], | |
value="128", | |
type="value" | |
) | |
with gr.Row(): | |
self.components["num_epochs"] = gr.Number( | |
label="Number of Epochs", | |
value=70, | |
minimum=1, | |
precision=0 | |
) | |
self.components["batch_size"] = gr.Number( | |
label="Batch Size", | |
value=1, | |
minimum=1, | |
precision=0 | |
) | |
with gr.Row(): | |
self.components["learning_rate"] = gr.Number( | |
label="Learning Rate", | |
value=2e-5, | |
minimum=1e-7 | |
) | |
self.components["save_iterations"] = gr.Number( | |
label="Save checkpoint every N iterations", | |
value=500, | |
minimum=50, | |
precision=0, | |
info="Model will be saved periodically after these many steps" | |
) | |
with gr.Column(): | |
with gr.Row(): | |
# Check for existing checkpoints to determine button text | |
has_checkpoints = len(list(OUTPUT_PATH.glob("checkpoint-*"))) > 0 | |
start_text = "Continue Training" if has_checkpoints else "Start Training" | |
self.components["start_btn"] = gr.Button( | |
start_text, | |
variant="primary", | |
interactive=not ASK_USER_TO_DUPLICATE_SPACE | |
) | |
# Just use stop and pause buttons for now to ensure compatibility | |
self.components["stop_btn"] = gr.Button( | |
"Stop at Last Checkpoint", | |
variant="primary", | |
interactive=False | |
) | |
self.components["pause_resume_btn"] = gr.Button( | |
"Resume Training", | |
variant="secondary", | |
interactive=False, | |
visible=False | |
) | |
# Add delete checkpoints button - THIS IS THE KEY FIX | |
self.components["delete_checkpoints_btn"] = gr.Button( | |
"Delete All Checkpoints", | |
variant="stop", | |
interactive=True | |
) | |
with gr.Row(): | |
with gr.Column(): | |
self.components["status_box"] = gr.Textbox( | |
label="Training Status", | |
interactive=False, | |
lines=4 | |
) | |
with gr.Accordion("See training logs"): | |
self.components["log_box"] = gr.TextArea( | |
label="Finetrainers output (see HF Space logs for more details)", | |
interactive=False, | |
lines=40, | |
max_lines=200, | |
autoscroll=True | |
) | |
return tab | |
def connect_events(self) -> None: | |
"""Connect event handlers to UI components""" | |
# Model type change event | |
def update_model_info(model, training_type): | |
params = self.get_default_params(MODEL_TYPES[model], TRAINING_TYPES[training_type]) | |
info = self.get_model_info(MODEL_TYPES[model], TRAINING_TYPES[training_type]) | |
show_lora_params = training_type == list(TRAINING_TYPES.keys())[0] # Show if LoRA Finetune | |
return { | |
self.components["model_info"]: info, | |
self.components["num_epochs"]: params["num_epochs"], | |
self.components["batch_size"]: params["batch_size"], | |
self.components["learning_rate"]: params["learning_rate"], | |
self.components["save_iterations"]: params["save_iterations"], | |
self.components["lora_params_row"]: gr.Row(visible=show_lora_params) | |
} | |
self.components["model_type"].change( | |
fn=lambda v: self.app.update_ui_state(model_type=v), | |
inputs=[self.components["model_type"]], | |
outputs=[] | |
).then( | |
fn=update_model_info, | |
inputs=[self.components["model_type"], self.components["training_type"]], | |
outputs=[ | |
self.components["model_info"], | |
self.components["num_epochs"], | |
self.components["batch_size"], | |
self.components["learning_rate"], | |
self.components["save_iterations"], | |
self.components["lora_params_row"] | |
] | |
) | |
# Training type change event | |
self.components["training_type"].change( | |
fn=lambda v: self.app.update_ui_state(training_type=v), | |
inputs=[self.components["training_type"]], | |
outputs=[] | |
).then( | |
fn=update_model_info, | |
inputs=[self.components["model_type"], self.components["training_type"]], | |
outputs=[ | |
self.components["model_info"], | |
self.components["num_epochs"], | |
self.components["batch_size"], | |
self.components["learning_rate"], | |
self.components["save_iterations"], | |
self.components["lora_params_row"] | |
] | |
) | |
# Training parameters change events | |
self.components["lora_rank"].change( | |
fn=lambda v: self.app.update_ui_state(lora_rank=v), | |
inputs=[self.components["lora_rank"]], | |
outputs=[] | |
) | |
self.components["lora_alpha"].change( | |
fn=lambda v: self.app.update_ui_state(lora_alpha=v), | |
inputs=[self.components["lora_alpha"]], | |
outputs=[] | |
) | |
self.components["num_epochs"].change( | |
fn=lambda v: self.app.update_ui_state(num_epochs=v), | |
inputs=[self.components["num_epochs"]], | |
outputs=[] | |
) | |
self.components["batch_size"].change( | |
fn=lambda v: self.app.update_ui_state(batch_size=v), | |
inputs=[self.components["batch_size"]], | |
outputs=[] | |
) | |
self.components["learning_rate"].change( | |
fn=lambda v: self.app.update_ui_state(learning_rate=v), | |
inputs=[self.components["learning_rate"]], | |
outputs=[] | |
) | |
self.components["save_iterations"].change( | |
fn=lambda v: self.app.update_ui_state(save_iterations=v), | |
inputs=[self.components["save_iterations"]], | |
outputs=[] | |
) | |
# Training preset change event | |
self.components["training_preset"].change( | |
fn=lambda v: self.app.update_ui_state(training_preset=v), | |
inputs=[self.components["training_preset"]], | |
outputs=[] | |
).then( | |
fn=self.update_training_params, | |
inputs=[self.components["training_preset"]], | |
outputs=[ | |
self.components["model_type"], | |
self.components["training_type"], | |
self.components["lora_rank"], | |
self.components["lora_alpha"], | |
self.components["num_epochs"], | |
self.components["batch_size"], | |
self.components["learning_rate"], | |
self.components["save_iterations"], | |
self.components["preset_info"], | |
self.components["lora_params_row"] | |
] | |
) | |
# Training control events | |
self.components["start_btn"].click( | |
fn=self.handle_training_start, | |
inputs=[ | |
self.components["training_preset"], | |
self.components["model_type"], | |
self.components["training_type"], | |
self.components["lora_rank"], | |
self.components["lora_alpha"], | |
self.components["num_epochs"], | |
self.components["batch_size"], | |
self.components["learning_rate"], | |
self.components["save_iterations"], | |
self.app.tabs["manage_tab"].components["repo_id"] | |
], | |
outputs=[ | |
self.components["status_box"], | |
self.components["log_box"] | |
] | |
).success( | |
fn=self.get_latest_status_message_logs_and_button_labels, | |
outputs=[ | |
self.components["status_box"], | |
self.components["log_box"], | |
self.components["start_btn"], | |
self.components["stop_btn"], | |
self.components["pause_resume_btn"] | |
] | |
) | |
self.components["pause_resume_btn"].click( | |
fn=self.handle_pause_resume, | |
outputs=[ | |
self.components["status_box"], | |
self.components["log_box"], | |
self.components["start_btn"], | |
self.components["stop_btn"], | |
self.components["pause_resume_btn"] | |
] | |
) | |
self.components["stop_btn"].click( | |
fn=self.handle_stop, | |
outputs=[ | |
self.components["status_box"], | |
self.components["log_box"], | |
self.components["start_btn"], | |
self.components["stop_btn"], | |
self.components["pause_resume_btn"] | |
] | |
) | |
def handle_training_start(self, preset, model_type, training_type, *args): | |
"""Handle training start with proper log parser reset and checkpoint detection""" | |
# Safely reset log parser if it exists | |
if hasattr(self.app, 'log_parser') and self.app.log_parser is not None: | |
self.app.log_parser.reset() | |
else: | |
logger.warning("Log parser not initialized, creating a new one") | |
from ..utils import TrainingLogParser | |
self.app.log_parser = TrainingLogParser() | |
# Check for latest checkpoint | |
checkpoints = list(OUTPUT_PATH.glob("checkpoint-*")) | |
resume_from = None | |
if checkpoints: | |
# Find the latest checkpoint | |
latest_checkpoint = max(checkpoints, key=os.path.getmtime) | |
resume_from = str(latest_checkpoint) | |
logger.info(f"Found checkpoint at {resume_from}, will resume training") | |
# Convert model_type display name to internal name | |
model_internal_type = MODEL_TYPES.get(model_type) | |
if not model_internal_type: | |
logger.error(f"Invalid model type: {model_type}") | |
return f"Error: Invalid model type '{model_type}'", "Model type not recognized" | |
# Convert training_type display name to internal name | |
training_internal_type = TRAINING_TYPES.get(training_type) | |
if not training_internal_type: | |
logger.error(f"Invalid training type: {training_type}") | |
return f"Error: Invalid training type '{training_type}'", "Training type not recognized" | |
# Start training (it will automatically use the checkpoint if provided) | |
try: | |
return self.app.trainer.start_training( | |
model_internal_type, # Use internal model type | |
*args, | |
preset_name=preset, | |
training_type=training_internal_type, # Pass the internal training type | |
resume_from_checkpoint=resume_from | |
) | |
except Exception as e: | |
logger.exception("Error starting training") | |
return f"Error starting training: {str(e)}", f"Exception: {str(e)}\n\nCheck the logs for more details." | |
def get_model_info(self, model_type: str, training_type: str) -> str: | |
"""Get information about the selected model type and training method""" | |
training_method = "LoRA finetune" if training_type == "lora" else "Full finetune" | |
if model_type == "hunyuan_video": | |
base_info = """### HunyuanVideo | |
- Required VRAM: ~48GB minimum | |
- Recommended batch size: 1-2 | |
- Typical training time: 2-4 hours | |
- Default resolution: 49x512x768""" | |
if training_type == "lora": | |
return base_info + "\n- Required VRAM: ~18GB minimum\n- Default LoRA rank: 128 (~400 MB)" | |
else: | |
return base_info + "\n- Required VRAM: ~21GB minimum\n- Full model size: ~8GB" | |
elif model_type == "wan": | |
base_info = """### Wan-2.1-T2V | |
- Recommended batch size: 1-2 | |
- Typical training time: 1-3 hours | |
- Default resolution: 49x512x768""" | |
if training_type == "lora": | |
return base_info + "\n- Required VRAM: ~16GB minimum\n- Default LoRA rank: 32 (~120 MB)" | |
else: | |
return base_info + "\n- **Full finetune not supported in this UI**" + "\n- Required VRAM: ~18GB minimum\n- Default LoRA rank: 128 (~400 MB)" | |
else: | |
return base_info + "\n- Required VRAM: ~21GB minimum\n- Full model size: ~8GB" | |
elif model_type == "wan": | |
base_info = """### Wan-2.1-T2V | |
- Recommended batch size: 1-2 | |
- Typical training time: 1-3 hours | |
- Default resolution: 49x512x768""" | |
if training_type == "lora": | |
return base_info + "\n- Required VRAM: ~16GB minimum\n- Default LoRA rank: 32 (~120 MB)" | |
else: | |
return base_info + "\n- **Full finetune not supported in this UI**" + "\n- Default LoRA rank: 128 (~600 MB)" | |
else: | |
return base_info + "\n- **Full finetune not recommended due to VRAM requirements**" | |
elif model_type == "ltx_video": | |
base_info = """### LTX-Video | |
- Recommended batch size: 1-4 | |
- Typical training time: 1-3 hours | |
- Default resolution: 49x512x768""" | |
if training_type == "lora": | |
return base_ | |
def get_default_params(self, model_type: str) -> Dict[str, Any]: | |
"""Get default training parameters for model type""" | |
if model_type == "hunyuan_video": | |
return { | |
"num_epochs": 70, | |
"batch_size": 1, | |
"learning_rate": 2e-5, | |
"save_iterations": 500, | |
"video_resolution_buckets": SMALL_TRAINING_BUCKETS, | |
"video_reshape_mode": "center", | |
"caption_dropout_p": 0.05, | |
"gradient_accumulation_steps": 1, | |
"rank": 128, | |
"lora_alpha": 128 | |
} | |
else: # ltx_video | |
return { | |
"num_epochs": 70, | |
"batch_size": 1, | |
"learning_rate": 3e-5, | |
"save_iterations": 500, | |
"video_resolution_buckets": SMALL_TRAINING_BUCKETS, | |
"video_reshape_mode": "center", | |
"caption_dropout_p": 0.05, | |
"gradient_accumulation_steps": 4, | |
"rank": 128, | |
"lora_alpha": 128 | |
} | |
def update_training_params(self, preset_name: str) -> Tuple: | |
"""Update UI components based on selected preset while preserving custom settings""" | |
preset = TRAINING_PRESETS[preset_name] | |
# Load current UI state to check if user has customized values | |
current_state = self.app.load_ui_values() | |
# Find the display name that maps to our model type | |
model_display_name = next( | |
key for key, value in MODEL_TYPES.items() | |
if value == preset["model_type"] | |
) | |
# Get preset description for display | |
description = preset.get("description", "") | |
# Get max values from buckets | |
buckets = preset["training_buckets"] | |
max_frames = max(frames for frames, _, _ in buckets) | |
max_height = max(height for _, height, _ in buckets) | |
max_width = max(width for _, _, width in buckets) | |
bucket_info = f"\nMaximum video size: {max_frames} frames at {max_width}x{max_height} resolution" | |
info_text = f"{description}{bucket_info}" | |
# Return values in the same order as the output components | |
# Use preset defaults but preserve user-modified values if they exist | |
lora_rank_val = current_state.get("lora_rank") if current_state.get("lora_rank") != preset.get("lora_rank", "128") else preset["lora_rank"] | |
lora_alpha_val = current_state.get("lora_alpha") if current_state.get("lora_alpha") != preset.get("lora_alpha", "128") else preset["lora_alpha"] | |
num_epochs_val = current_state.get("num_epochs") if current_state.get("num_epochs") != preset.get("num_epochs", 70) else preset["num_epochs"] | |
batch_size_val = current_state.get("batch_size") if current_state.get("batch_size") != preset.get("batch_size", 1) else preset["batch_size"] | |
learning_rate_val = current_state.get("learning_rate") if current_state.get("learning_rate") != preset.get("learning_rate", 3e-5) else preset["learning_rate"] | |
save_iterations_val = current_state.get("save_iterations") if current_state.get("save_iterations") != preset.get("save_iterations", 500) else preset["save_iterations"] | |
return ( | |
model_display_name, | |
lora_rank_val, | |
lora_alpha_val, | |
num_epochs_val, | |
batch_size_val, | |
learning_rate_val, | |
save_iterations_val, | |
info_text | |
) | |
def update_training_ui(self, training_state: Dict[str, Any]): | |
"""Update UI components based on training state""" | |
updates = {} | |
# Update status box with high-level information | |
status_text = [] | |
if training_state["status"] != "idle": | |
status_text.extend([ | |
f"Status: {training_state['status']}", | |
f"Progress: {training_state['progress']}", | |
f"Step: {training_state['current_step']}/{training_state['total_steps']}", | |
# Epoch information | |
# there is an issue with how epoch is reported because we display: | |
# Progress: 96.9%, Step: 872/900, Epoch: 12/50 | |
# we should probably just show the steps | |
#f"Epoch: {training_state['current_epoch']}/{training_state['total_epochs']}", | |
f"Time elapsed: {training_state['elapsed']}", | |
f"Estimated remaining: {training_state['remaining']}", | |
"", | |
f"Current loss: {training_state['step_loss']}", | |
f"Learning rate: {training_state['learning_rate']}", | |
f"Gradient norm: {training_state['grad_norm']}", | |
f"Memory usage: {training_state['memory']}" | |
]) | |
if training_state["error_message"]: | |
status_text.append(f"\nError: {training_state['error_message']}") | |
updates["status_box"] = "\n".join(status_text) | |
# Update button states | |
updates["start_btn"] = gr.Button( | |
"Start training", | |
interactive=(training_state["status"] in ["idle", "completed", "error", "stopped"]), | |
variant="primary" if training_state["status"] == "idle" else "secondary" | |
) | |
updates["stop_btn"] = gr.Button( | |
"Stop training", | |
interactive=(training_state["status"] in ["training", "initializing"]), | |
variant="stop" | |
) | |
return updates | |
def handle_pause_resume(self): | |
status, _, _ = self.get_latest_status_message_and_logs() | |
if status == "paused": | |
self.app.trainer.resume_training() | |
else: | |
self.app.trainer.pause_training() | |
return self.get_latest_status_message_logs_and_button_labels() | |
def handle_stop(self): | |
self.app.trainer.stop_training() | |
return self.get_latest_status_message_logs_and_button_labels() | |
def get_latest_status_message_and_logs(self) -> Tuple[str, str, str]: | |
"""Get latest status message, log content, and status code in a safer way""" | |
state = self.app.trainer.get_status() | |
logs = self.app.trainer.get_logs() | |
# Check if training process died unexpectedly | |
training_died = False | |
if state["status"] == "training" and not self.app.trainer.is_training_running(): | |
state["status"] = "error" | |
state["message"] = "Training process terminated unexpectedly." | |
training_died = True | |
# Look for error in logs | |
error_lines = [] | |
for line in logs.splitlines(): | |
if "Error:" in line or "Exception:" in line or "Traceback" in line: | |
error_lines.append(line) | |
if error_lines: | |
state["message"] += f"\n\nPossible error: {error_lines[-1]}" | |
# Ensure log parser is initialized | |
if not hasattr(self.app, 'log_parser') or self.app.log_parser is None: | |
from ..utils import TrainingLogParser | |
self.app.log_parser = TrainingLogParser() | |
logger.info("Initialized missing log parser") | |
# Parse new log lines | |
if logs and not training_died: | |
last_state = None | |
for line in logs.splitlines(): | |
try: | |
state_update = self.app.log_parser.parse_line(line) | |
if state_update: | |
last_state = state_update | |
except Exception as e: | |
logger.error(f"Error parsing log line: {str(e)}") | |
continue | |
if last_state: | |
ui_updates = self.update_training_ui(last_state) | |
state["message"] = ui_updates.get("status_box", state["message"]) | |
# Parse status for training state | |
if "completed" in state["message"].lower(): | |
state["status"] = "completed" | |
elif "error" in state["message"].lower(): | |
state["status"] = "error" | |
elif "failed" in state["message"].lower(): | |
state["status"] = "error" | |
elif "stopped" in state["message"].lower(): | |
state["status"] = "stopped" | |
return (state["status"], state["message"], logs) | |
def get_latest_status_message_logs_and_button_labels(self) -> Tuple: | |
"""Get latest status message, logs and button states""" | |
status, message, logs = self.get_latest_status_message_and_logs() | |
# Add checkpoints detection | |
has_checkpoints = len(list(OUTPUT_PATH.glob("checkpoint-*"))) > 0 | |
button_updates = self.update_training_buttons(status, has_checkpoints).values() | |
# Return in order expected by timer | |
return (message, logs, *button_updates) | |
def update_training_buttons(self, status: str, has_checkpoints: bool = None) -> Dict: | |
"""Update training control buttons based on state""" | |
if has_checkpoints is None: | |
has_checkpoints = len(list(OUTPUT_PATH.glob("checkpoint-*"))) > 0 | |
is_training = status in ["training", "initializing"] | |
is_completed = status in ["completed", "error", "stopped"] | |
start_text = "Continue Training" if has_checkpoints else "Start Training" | |
# Only include buttons that we know exist in components | |
result = { | |
"start_btn": gr.Button( | |
value=start_text, | |
interactive=not is_training, | |
variant="primary" if not is_training else "secondary", | |
), | |
"stop_btn": gr.Button( | |
value="Stop at Last Checkpoint", | |
interactive=is_training, | |
variant="primary" if is_training else "secondary", | |
) | |
} | |
# Add delete_checkpoints_btn only if it exists in components | |
if "delete_checkpoints_btn" in self.components: | |
result["delete_checkpoints_btn"] = gr.Button( | |
value="Delete All Checkpoints", | |
interactive=has_checkpoints and not is_training, | |
variant="stop", | |
) | |
else: | |
# Add pause_resume_btn as fallback | |
result["pause_resume_btn"] = gr.Button( | |
value="Resume Training" if status == "paused" else "Pause Training", | |
interactive=(is_training or status == "paused") and not is_completed, | |
variant="secondary", | |
visible=False | |
) | |
return result |