VideoModelStudio / vms /tabs /train_tab.py
jbilcke-hf's picture
jbilcke-hf HF Staff
upgrading our code to support the new finetrainers
d464085
raw
history blame
28.7 kB
"""
Train tab for Video Model Studio UI
"""
import gradio as gr
import logging
from typing import Dict, Any, List, Optional, Tuple
from pathlib import Path
from .base_tab import BaseTab
from ..config import TRAINING_PRESETS, OUTPUT_PATH, MODEL_TYPES, ASK_USER_TO_DUPLICATE_SPACE, SMALL_TRAINING_BUCKETS
from ..utils import TrainingLogParser
logger = logging.getLogger(__name__)
class TrainTab(BaseTab):
"""Train tab for model training"""
def __init__(self, app_state):
super().__init__(app_state)
self.id = "train_tab"
self.title = "4️⃣ Train"
def create(self, parent=None) -> gr.TabItem:
"""Create the Train tab UI components"""
with gr.TabItem(self.title, id=self.id) as tab:
with gr.Row():
with gr.Column():
with gr.Row():
self.components["train_title"] = gr.Markdown("## 0 files available for training (0 bytes)")
with gr.Row():
with gr.Column():
self.components["training_preset"] = gr.Dropdown(
choices=list(TRAINING_PRESETS.keys()),
label="Training Preset",
value=list(TRAINING_PRESETS.keys())[0]
)
self.components["preset_info"] = gr.Markdown()
with gr.Row():
with gr.Column():
self.components["model_type"] = gr.Dropdown(
choices=list(MODEL_TYPES.keys()),
label="Model Type",
value=list(MODEL_TYPES.keys())[0]
)
with gr.Column():
self.components["training_type"] = gr.Dropdown(
choices=list(TRAINING_TYPES.keys()),
label="Training Type",
value=list(TRAINING_TYPES.keys())[0]
)
with gr.Row():
self.components["model_info"] = gr.Markdown(
value=self.get_model_info(list(MODEL_TYPES.keys())[0], list(TRAINING_TYPES.keys())[0])
)
# LoRA specific parameters (will show/hide based on training type)
with gr.Row(visible=True) as lora_params_row:
self.components["lora_params_row"] = lora_params_row
self.components["lora_rank"] = gr.Dropdown(
label="LoRA Rank",
choices=["16", "32", "64", "128", "256", "512", "1024"],
value="128",
type="value"
)
self.components["lora_alpha"] = gr.Dropdown(
label="LoRA Alpha",
choices=["16", "32", "64", "128", "256", "512", "1024"],
value="128",
type="value"
)
with gr.Row():
self.components["num_epochs"] = gr.Number(
label="Number of Epochs",
value=70,
minimum=1,
precision=0
)
self.components["batch_size"] = gr.Number(
label="Batch Size",
value=1,
minimum=1,
precision=0
)
with gr.Row():
self.components["learning_rate"] = gr.Number(
label="Learning Rate",
value=2e-5,
minimum=1e-7
)
self.components["save_iterations"] = gr.Number(
label="Save checkpoint every N iterations",
value=500,
minimum=50,
precision=0,
info="Model will be saved periodically after these many steps"
)
with gr.Column():
with gr.Row():
# Check for existing checkpoints to determine button text
has_checkpoints = len(list(OUTPUT_PATH.glob("checkpoint-*"))) > 0
start_text = "Continue Training" if has_checkpoints else "Start Training"
self.components["start_btn"] = gr.Button(
start_text,
variant="primary",
interactive=not ASK_USER_TO_DUPLICATE_SPACE
)
# Just use stop and pause buttons for now to ensure compatibility
self.components["stop_btn"] = gr.Button(
"Stop at Last Checkpoint",
variant="primary",
interactive=False
)
self.components["pause_resume_btn"] = gr.Button(
"Resume Training",
variant="secondary",
interactive=False,
visible=False
)
# Add delete checkpoints button - THIS IS THE KEY FIX
self.components["delete_checkpoints_btn"] = gr.Button(
"Delete All Checkpoints",
variant="stop",
interactive=True
)
with gr.Row():
with gr.Column():
self.components["status_box"] = gr.Textbox(
label="Training Status",
interactive=False,
lines=4
)
with gr.Accordion("See training logs"):
self.components["log_box"] = gr.TextArea(
label="Finetrainers output (see HF Space logs for more details)",
interactive=False,
lines=40,
max_lines=200,
autoscroll=True
)
return tab
def connect_events(self) -> None:
"""Connect event handlers to UI components"""
# Model type change event
def update_model_info(model, training_type):
params = self.get_default_params(MODEL_TYPES[model], TRAINING_TYPES[training_type])
info = self.get_model_info(MODEL_TYPES[model], TRAINING_TYPES[training_type])
show_lora_params = training_type == list(TRAINING_TYPES.keys())[0] # Show if LoRA Finetune
return {
self.components["model_info"]: info,
self.components["num_epochs"]: params["num_epochs"],
self.components["batch_size"]: params["batch_size"],
self.components["learning_rate"]: params["learning_rate"],
self.components["save_iterations"]: params["save_iterations"],
self.components["lora_params_row"]: gr.Row(visible=show_lora_params)
}
self.components["model_type"].change(
fn=lambda v: self.app.update_ui_state(model_type=v),
inputs=[self.components["model_type"]],
outputs=[]
).then(
fn=update_model_info,
inputs=[self.components["model_type"], self.components["training_type"]],
outputs=[
self.components["model_info"],
self.components["num_epochs"],
self.components["batch_size"],
self.components["learning_rate"],
self.components["save_iterations"],
self.components["lora_params_row"]
]
)
# Training type change event
self.components["training_type"].change(
fn=lambda v: self.app.update_ui_state(training_type=v),
inputs=[self.components["training_type"]],
outputs=[]
).then(
fn=update_model_info,
inputs=[self.components["model_type"], self.components["training_type"]],
outputs=[
self.components["model_info"],
self.components["num_epochs"],
self.components["batch_size"],
self.components["learning_rate"],
self.components["save_iterations"],
self.components["lora_params_row"]
]
)
# Training parameters change events
self.components["lora_rank"].change(
fn=lambda v: self.app.update_ui_state(lora_rank=v),
inputs=[self.components["lora_rank"]],
outputs=[]
)
self.components["lora_alpha"].change(
fn=lambda v: self.app.update_ui_state(lora_alpha=v),
inputs=[self.components["lora_alpha"]],
outputs=[]
)
self.components["num_epochs"].change(
fn=lambda v: self.app.update_ui_state(num_epochs=v),
inputs=[self.components["num_epochs"]],
outputs=[]
)
self.components["batch_size"].change(
fn=lambda v: self.app.update_ui_state(batch_size=v),
inputs=[self.components["batch_size"]],
outputs=[]
)
self.components["learning_rate"].change(
fn=lambda v: self.app.update_ui_state(learning_rate=v),
inputs=[self.components["learning_rate"]],
outputs=[]
)
self.components["save_iterations"].change(
fn=lambda v: self.app.update_ui_state(save_iterations=v),
inputs=[self.components["save_iterations"]],
outputs=[]
)
# Training preset change event
self.components["training_preset"].change(
fn=lambda v: self.app.update_ui_state(training_preset=v),
inputs=[self.components["training_preset"]],
outputs=[]
).then(
fn=self.update_training_params,
inputs=[self.components["training_preset"]],
outputs=[
self.components["model_type"],
self.components["training_type"],
self.components["lora_rank"],
self.components["lora_alpha"],
self.components["num_epochs"],
self.components["batch_size"],
self.components["learning_rate"],
self.components["save_iterations"],
self.components["preset_info"],
self.components["lora_params_row"]
]
)
# Training control events
self.components["start_btn"].click(
fn=self.handle_training_start,
inputs=[
self.components["training_preset"],
self.components["model_type"],
self.components["training_type"],
self.components["lora_rank"],
self.components["lora_alpha"],
self.components["num_epochs"],
self.components["batch_size"],
self.components["learning_rate"],
self.components["save_iterations"],
self.app.tabs["manage_tab"].components["repo_id"]
],
outputs=[
self.components["status_box"],
self.components["log_box"]
]
).success(
fn=self.get_latest_status_message_logs_and_button_labels,
outputs=[
self.components["status_box"],
self.components["log_box"],
self.components["start_btn"],
self.components["stop_btn"],
self.components["pause_resume_btn"]
]
)
self.components["pause_resume_btn"].click(
fn=self.handle_pause_resume,
outputs=[
self.components["status_box"],
self.components["log_box"],
self.components["start_btn"],
self.components["stop_btn"],
self.components["pause_resume_btn"]
]
)
self.components["stop_btn"].click(
fn=self.handle_stop,
outputs=[
self.components["status_box"],
self.components["log_box"],
self.components["start_btn"],
self.components["stop_btn"],
self.components["pause_resume_btn"]
]
)
def handle_training_start(self, preset, model_type, training_type, *args):
"""Handle training start with proper log parser reset and checkpoint detection"""
# Safely reset log parser if it exists
if hasattr(self.app, 'log_parser') and self.app.log_parser is not None:
self.app.log_parser.reset()
else:
logger.warning("Log parser not initialized, creating a new one")
from ..utils import TrainingLogParser
self.app.log_parser = TrainingLogParser()
# Check for latest checkpoint
checkpoints = list(OUTPUT_PATH.glob("checkpoint-*"))
resume_from = None
if checkpoints:
# Find the latest checkpoint
latest_checkpoint = max(checkpoints, key=os.path.getmtime)
resume_from = str(latest_checkpoint)
logger.info(f"Found checkpoint at {resume_from}, will resume training")
# Convert model_type display name to internal name
model_internal_type = MODEL_TYPES.get(model_type)
if not model_internal_type:
logger.error(f"Invalid model type: {model_type}")
return f"Error: Invalid model type '{model_type}'", "Model type not recognized"
# Convert training_type display name to internal name
training_internal_type = TRAINING_TYPES.get(training_type)
if not training_internal_type:
logger.error(f"Invalid training type: {training_type}")
return f"Error: Invalid training type '{training_type}'", "Training type not recognized"
# Start training (it will automatically use the checkpoint if provided)
try:
return self.app.trainer.start_training(
model_internal_type, # Use internal model type
*args,
preset_name=preset,
training_type=training_internal_type, # Pass the internal training type
resume_from_checkpoint=resume_from
)
except Exception as e:
logger.exception("Error starting training")
return f"Error starting training: {str(e)}", f"Exception: {str(e)}\n\nCheck the logs for more details."
def get_model_info(self, model_type: str, training_type: str) -> str:
"""Get information about the selected model type and training method"""
training_method = "LoRA finetune" if training_type == "lora" else "Full finetune"
if model_type == "hunyuan_video":
base_info = """### HunyuanVideo
- Required VRAM: ~48GB minimum
- Recommended batch size: 1-2
- Typical training time: 2-4 hours
- Default resolution: 49x512x768"""
if training_type == "lora":
return base_info + "\n- Required VRAM: ~18GB minimum\n- Default LoRA rank: 128 (~400 MB)"
else:
return base_info + "\n- Required VRAM: ~21GB minimum\n- Full model size: ~8GB"
elif model_type == "wan":
base_info = """### Wan-2.1-T2V
- Recommended batch size: 1-2
- Typical training time: 1-3 hours
- Default resolution: 49x512x768"""
if training_type == "lora":
return base_info + "\n- Required VRAM: ~16GB minimum\n- Default LoRA rank: 32 (~120 MB)"
else:
return base_info + "\n- **Full finetune not supported in this UI**" + "\n- Required VRAM: ~18GB minimum\n- Default LoRA rank: 128 (~400 MB)"
else:
return base_info + "\n- Required VRAM: ~21GB minimum\n- Full model size: ~8GB"
elif model_type == "wan":
base_info = """### Wan-2.1-T2V
- Recommended batch size: 1-2
- Typical training time: 1-3 hours
- Default resolution: 49x512x768"""
if training_type == "lora":
return base_info + "\n- Required VRAM: ~16GB minimum\n- Default LoRA rank: 32 (~120 MB)"
else:
return base_info + "\n- **Full finetune not supported in this UI**" + "\n- Default LoRA rank: 128 (~600 MB)"
else:
return base_info + "\n- **Full finetune not recommended due to VRAM requirements**"
elif model_type == "ltx_video":
base_info = """### LTX-Video
- Recommended batch size: 1-4
- Typical training time: 1-3 hours
- Default resolution: 49x512x768"""
if training_type == "lora":
return base_
def get_default_params(self, model_type: str) -> Dict[str, Any]:
"""Get default training parameters for model type"""
if model_type == "hunyuan_video":
return {
"num_epochs": 70,
"batch_size": 1,
"learning_rate": 2e-5,
"save_iterations": 500,
"video_resolution_buckets": SMALL_TRAINING_BUCKETS,
"video_reshape_mode": "center",
"caption_dropout_p": 0.05,
"gradient_accumulation_steps": 1,
"rank": 128,
"lora_alpha": 128
}
else: # ltx_video
return {
"num_epochs": 70,
"batch_size": 1,
"learning_rate": 3e-5,
"save_iterations": 500,
"video_resolution_buckets": SMALL_TRAINING_BUCKETS,
"video_reshape_mode": "center",
"caption_dropout_p": 0.05,
"gradient_accumulation_steps": 4,
"rank": 128,
"lora_alpha": 128
}
def update_training_params(self, preset_name: str) -> Tuple:
"""Update UI components based on selected preset while preserving custom settings"""
preset = TRAINING_PRESETS[preset_name]
# Load current UI state to check if user has customized values
current_state = self.app.load_ui_values()
# Find the display name that maps to our model type
model_display_name = next(
key for key, value in MODEL_TYPES.items()
if value == preset["model_type"]
)
# Get preset description for display
description = preset.get("description", "")
# Get max values from buckets
buckets = preset["training_buckets"]
max_frames = max(frames for frames, _, _ in buckets)
max_height = max(height for _, height, _ in buckets)
max_width = max(width for _, _, width in buckets)
bucket_info = f"\nMaximum video size: {max_frames} frames at {max_width}x{max_height} resolution"
info_text = f"{description}{bucket_info}"
# Return values in the same order as the output components
# Use preset defaults but preserve user-modified values if they exist
lora_rank_val = current_state.get("lora_rank") if current_state.get("lora_rank") != preset.get("lora_rank", "128") else preset["lora_rank"]
lora_alpha_val = current_state.get("lora_alpha") if current_state.get("lora_alpha") != preset.get("lora_alpha", "128") else preset["lora_alpha"]
num_epochs_val = current_state.get("num_epochs") if current_state.get("num_epochs") != preset.get("num_epochs", 70) else preset["num_epochs"]
batch_size_val = current_state.get("batch_size") if current_state.get("batch_size") != preset.get("batch_size", 1) else preset["batch_size"]
learning_rate_val = current_state.get("learning_rate") if current_state.get("learning_rate") != preset.get("learning_rate", 3e-5) else preset["learning_rate"]
save_iterations_val = current_state.get("save_iterations") if current_state.get("save_iterations") != preset.get("save_iterations", 500) else preset["save_iterations"]
return (
model_display_name,
lora_rank_val,
lora_alpha_val,
num_epochs_val,
batch_size_val,
learning_rate_val,
save_iterations_val,
info_text
)
def update_training_ui(self, training_state: Dict[str, Any]):
"""Update UI components based on training state"""
updates = {}
# Update status box with high-level information
status_text = []
if training_state["status"] != "idle":
status_text.extend([
f"Status: {training_state['status']}",
f"Progress: {training_state['progress']}",
f"Step: {training_state['current_step']}/{training_state['total_steps']}",
# Epoch information
# there is an issue with how epoch is reported because we display:
# Progress: 96.9%, Step: 872/900, Epoch: 12/50
# we should probably just show the steps
#f"Epoch: {training_state['current_epoch']}/{training_state['total_epochs']}",
f"Time elapsed: {training_state['elapsed']}",
f"Estimated remaining: {training_state['remaining']}",
"",
f"Current loss: {training_state['step_loss']}",
f"Learning rate: {training_state['learning_rate']}",
f"Gradient norm: {training_state['grad_norm']}",
f"Memory usage: {training_state['memory']}"
])
if training_state["error_message"]:
status_text.append(f"\nError: {training_state['error_message']}")
updates["status_box"] = "\n".join(status_text)
# Update button states
updates["start_btn"] = gr.Button(
"Start training",
interactive=(training_state["status"] in ["idle", "completed", "error", "stopped"]),
variant="primary" if training_state["status"] == "idle" else "secondary"
)
updates["stop_btn"] = gr.Button(
"Stop training",
interactive=(training_state["status"] in ["training", "initializing"]),
variant="stop"
)
return updates
def handle_pause_resume(self):
status, _, _ = self.get_latest_status_message_and_logs()
if status == "paused":
self.app.trainer.resume_training()
else:
self.app.trainer.pause_training()
return self.get_latest_status_message_logs_and_button_labels()
def handle_stop(self):
self.app.trainer.stop_training()
return self.get_latest_status_message_logs_and_button_labels()
def get_latest_status_message_and_logs(self) -> Tuple[str, str, str]:
"""Get latest status message, log content, and status code in a safer way"""
state = self.app.trainer.get_status()
logs = self.app.trainer.get_logs()
# Check if training process died unexpectedly
training_died = False
if state["status"] == "training" and not self.app.trainer.is_training_running():
state["status"] = "error"
state["message"] = "Training process terminated unexpectedly."
training_died = True
# Look for error in logs
error_lines = []
for line in logs.splitlines():
if "Error:" in line or "Exception:" in line or "Traceback" in line:
error_lines.append(line)
if error_lines:
state["message"] += f"\n\nPossible error: {error_lines[-1]}"
# Ensure log parser is initialized
if not hasattr(self.app, 'log_parser') or self.app.log_parser is None:
from ..utils import TrainingLogParser
self.app.log_parser = TrainingLogParser()
logger.info("Initialized missing log parser")
# Parse new log lines
if logs and not training_died:
last_state = None
for line in logs.splitlines():
try:
state_update = self.app.log_parser.parse_line(line)
if state_update:
last_state = state_update
except Exception as e:
logger.error(f"Error parsing log line: {str(e)}")
continue
if last_state:
ui_updates = self.update_training_ui(last_state)
state["message"] = ui_updates.get("status_box", state["message"])
# Parse status for training state
if "completed" in state["message"].lower():
state["status"] = "completed"
elif "error" in state["message"].lower():
state["status"] = "error"
elif "failed" in state["message"].lower():
state["status"] = "error"
elif "stopped" in state["message"].lower():
state["status"] = "stopped"
return (state["status"], state["message"], logs)
def get_latest_status_message_logs_and_button_labels(self) -> Tuple:
"""Get latest status message, logs and button states"""
status, message, logs = self.get_latest_status_message_and_logs()
# Add checkpoints detection
has_checkpoints = len(list(OUTPUT_PATH.glob("checkpoint-*"))) > 0
button_updates = self.update_training_buttons(status, has_checkpoints).values()
# Return in order expected by timer
return (message, logs, *button_updates)
def update_training_buttons(self, status: str, has_checkpoints: bool = None) -> Dict:
"""Update training control buttons based on state"""
if has_checkpoints is None:
has_checkpoints = len(list(OUTPUT_PATH.glob("checkpoint-*"))) > 0
is_training = status in ["training", "initializing"]
is_completed = status in ["completed", "error", "stopped"]
start_text = "Continue Training" if has_checkpoints else "Start Training"
# Only include buttons that we know exist in components
result = {
"start_btn": gr.Button(
value=start_text,
interactive=not is_training,
variant="primary" if not is_training else "secondary",
),
"stop_btn": gr.Button(
value="Stop at Last Checkpoint",
interactive=is_training,
variant="primary" if is_training else "secondary",
)
}
# Add delete_checkpoints_btn only if it exists in components
if "delete_checkpoints_btn" in self.components:
result["delete_checkpoints_btn"] = gr.Button(
value="Delete All Checkpoints",
interactive=has_checkpoints and not is_training,
variant="stop",
)
else:
# Add pause_resume_btn as fallback
result["pause_resume_btn"] = gr.Button(
value="Resume Training" if status == "paused" else "Pause Training",
interactive=(is_training or status == "paused") and not is_completed,
variant="secondary",
visible=False
)
return result