Update app.py
Browse files
app.py
CHANGED
@@ -15,6 +15,9 @@ from langchain_core.runnables import RunnablePassthrough
|
|
15 |
# Initialize the FAISS vector store
|
16 |
vector_store = None
|
17 |
|
|
|
|
|
|
|
18 |
template = \
|
19 |
"""Use the following pieces of context to answer the question at the end.
|
20 |
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
@@ -47,19 +50,24 @@ def index_pdf(pdf):
|
|
47 |
|
48 |
return "PDF indexed successfully!"
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
# if vector_store is None:
|
53 |
-
# return "Please upload and index a PDF first."
|
54 |
-
|
55 |
-
# # Create a retrieval-based QA chain
|
56 |
-
# retriever = vector_store.as_retriever()
|
57 |
-
# qa_chain = RetrievalQA(llm=OpenAI(), retriever=retriever)
|
58 |
-
|
59 |
-
# # Get the response from the QA chain
|
60 |
-
# response = qa_chain.run(query)
|
61 |
|
62 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
|
65 |
def format_docs(docs):
|
@@ -104,8 +112,10 @@ with gr.Blocks(theme="Nymbo/Alyx_Theme") as demo:
|
|
104 |
with gr.Tab("Indexing"):
|
105 |
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
|
106 |
index_button = gr.Button("Index PDF")
|
|
|
107 |
index_output = gr.Textbox(label="Indexing Status")
|
108 |
index_button.click(index_pdf, inputs=pdf_input, outputs=index_output)
|
|
|
109 |
|
110 |
with gr.Tab("Chatbot"):
|
111 |
# query_input = gr.Textbox(label="Enter your question")
|
|
|
15 |
# Initialize the FAISS vector store
|
16 |
vector_store = None
|
17 |
|
18 |
+
# Sample PDF file
|
19 |
+
sample_filename = "Attention Is All You Need.pdf"
|
20 |
+
|
21 |
template = \
|
22 |
"""Use the following pieces of context to answer the question at the end.
|
23 |
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
|
|
50 |
|
51 |
return "PDF indexed successfully!"
|
52 |
|
53 |
+
def load_sample_pdf():
|
54 |
+
global vector_store
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# Load the PDF
|
57 |
+
loader = PyPDFLoader(sample_filename)
|
58 |
+
documents = loader.load()
|
59 |
+
|
60 |
+
# Split the documents into chunks
|
61 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
62 |
+
texts = text_splitter.split_documents(documents)
|
63 |
+
|
64 |
+
# Embed the chunks
|
65 |
+
embeddings = HuggingFaceEmbeddings(model_name="bert-base-uncased", encode_kwargs={"normalize_embeddings": True})
|
66 |
+
|
67 |
+
# Store the embeddings in the vector store
|
68 |
+
vector_store = FAISS.from_documents(texts, embeddings)
|
69 |
+
|
70 |
+
return "Sample PDF indexed successfully!"
|
71 |
|
72 |
|
73 |
def format_docs(docs):
|
|
|
112 |
with gr.Tab("Indexing"):
|
113 |
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
|
114 |
index_button = gr.Button("Index PDF")
|
115 |
+
load_sample = gr.Button("Or load "Attention Is All You Need.pdf" as a Sample")
|
116 |
index_output = gr.Textbox(label="Indexing Status")
|
117 |
index_button.click(index_pdf, inputs=pdf_input, outputs=index_output)
|
118 |
+
load_sample.click(load_sample_pdf, inputs=None, outputs=index_output)
|
119 |
|
120 |
with gr.Tab("Chatbot"):
|
121 |
# query_input = gr.Textbox(label="Enter your question")
|