File size: 2,434 Bytes
afbc655 762c48d afbc655 1cb3d90 cf58608 22eeff0 1cb3d90 22eeff0 cf58608 1cb3d90 762c48d 1cb3d90 762c48d 1cb3d90 cf58608 1cb3d90 cf58608 1cb3d90 cf58608 1cb3d90 cf58608 afbc655 1cb3d90 cf58608 22eeff0 1cb3d90 22eeff0 cf58608 1cb3d90 22eeff0 afbc655 1cb3d90 cb5724e 1cb3d90 cb5724e 22eeff0 afbc655 1cb3d90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
# load up the libraries
import panel as pn
import pandas as pd
import altair as alt
from vega_datasets import data
# Enable Panel extensions
pn.extension()
# pn.extension('vega', 'tabulator')
# pn.extension(design='bootstrap')
# pn.extension('vega')
template = pn.template.BootstrapTemplate(
title='SI649 Altair3',
)
# Define a function to create and return a plot
def create_plot(subgroup, date_range, moving_av_window):
# Apply any required transformations to the data in pandas)
filtered_df = df2_approve[df2_approve['subgroup'] == subgroup]
filtered_df = filtered_df[(filtered_df['timestamp'].dt.date >= date_range[0]) & (filtered_df['timestamp'].dt.date <= date_range[1])]
filtered_df['mov_avg'] = filtered_df['rate'].rolling(window=moving_av_window).mean().shift(moving_av_window//2)
# Line chart
line_chart = alt.Chart(filtered_df).mark_line(color='red', size=2).encode(
x='timestamp:T',
y='mov_avg:Q'
)
# Scatter plot with individual polls
scatter_plot = alt.Chart(filtered_df).mark_point(color='grey', size=2, opacity=0.7).encode(
x='timestamp:T',
y='rate:Q'
)
# Put them togetehr
plot = scatter_plot + line_chart
# Return the combined chart
return plot
# # Create the selection widget
select = pn.widgets.Select(name='Select', options=['All polls', 'Adults', 'Voters'])
# # Create the slider for the date range
date_range_slider = pn.widgets.DateRangeSlider(
name='Date Range Slider',
start=df2_approve['timestamp'].dt.date.min(), end=df2_approve['timestamp'].dt.date.max(),
value=(df2_approve['timestamp'].dt.date.min(), df2_approve['timestamp'].dt.date.max()),
step=1
)
# # Create the slider for the moving average window
moving_av_slider = pn.widgets.IntSlider(name='Moving Average Window', start=1, end=100, value=1)
# Bind the widgets to the create_plot function
final = pn.Row(pn.bind(create_plot,
subgroup=select,
date_range=date_range_slider,
moving_av_window=moving_av_slider))
# # Combine everything in a Panel Column to create an app
maincol=pn.Column()
maincol.append(final)
maincol.append(select)
maincol.append(date_range_slider)
maincol.append(moving_av_slider)
template.main.append(maincol)
# Indicate that the template object is the "application" and serve it
template.servable(title="SI649 Altair3") |