Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
from PIL import Image | |
# Define the pipeline | |
def load_pipeline(): | |
return pipeline("image-classification", model="yangy50/garbage-classification") | |
pipe = load_pipeline() | |
# Streamlit UI | |
st.title("Garbage Classification App") | |
st.write("Upload an image to classify it as a type of garbage.") | |
# File uploader | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
# Load image | |
image = Image.open(uploaded_file) | |
# Display image | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
# Run inference | |
results = pipe(image) | |
# Get top prediction | |
top_prediction = max(results, key=lambda x: x["score"]) | |
# Display result | |
st.write(f"**Predicted Class:** {top_prediction['label']}") | |
st.write(f"**Confidence:** {top_prediction['score']:.2f}") | |