Spaces:
Runtime error
Runtime error
<!--Copyright 2024 The HuggingFace Team. All rights reserved. | |
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with | |
the License. You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on | |
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the | |
specific language governing permissions and limitations under the License. | |
--> | |
# DiffEdit | |
[[open-in-colab]] | |
Image editing typically requires providing a mask of the area to be edited. DiffEdit automatically generates the mask for you based on a text query, making it easier overall to create a mask without image editing software. The DiffEdit algorithm works in three steps: | |
1. the diffusion model denoises an image conditioned on some query text and reference text which produces different noise estimates for different areas of the image; the difference is used to infer a mask to identify which area of the image needs to be changed to match the query text | |
2. the input image is encoded into latent space with DDIM | |
3. the latents are decoded with the diffusion model conditioned on the text query, using the mask as a guide such that pixels outside the mask remain the same as in the input image | |
This guide will show you how to use DiffEdit to edit images without manually creating a mask. | |
Before you begin, make sure you have the following libraries installed: | |
```py | |
# uncomment to install the necessary libraries in Colab | |
#!pip install -q diffusers transformers accelerate | |
``` | |
The [`StableDiffusionDiffEditPipeline`] requires an image mask and a set of partially inverted latents. The image mask is generated from the [`~StableDiffusionDiffEditPipeline.generate_mask`] function, and includes two parameters, `source_prompt` and `target_prompt`. These parameters determine what to edit in the image. For example, if you want to change a bowl of *fruits* to a bowl of *pears*, then: | |
```py | |
source_prompt = "a bowl of fruits" | |
target_prompt = "a bowl of pears" | |
``` | |
The partially inverted latents are generated from the [`~StableDiffusionDiffEditPipeline.invert`] function, and it is generally a good idea to include a `prompt` or *caption* describing the image to help guide the inverse latent sampling process. The caption can often be your `source_prompt`, but feel free to experiment with other text descriptions! | |
Let's load the pipeline, scheduler, inverse scheduler, and enable some optimizations to reduce memory usage: | |
```py | |
import torch | |
from diffusers import DDIMScheduler, DDIMInverseScheduler, StableDiffusionDiffEditPipeline | |
pipeline = StableDiffusionDiffEditPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-2-1", | |
torch_dtype=torch.float16, | |
safety_checker=None, | |
use_safetensors=True, | |
) | |
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config) | |
pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config) | |
pipeline.enable_model_cpu_offload() | |
pipeline.enable_vae_slicing() | |
``` | |
Load the image to edit: | |
```py | |
from diffusers.utils import load_image, make_image_grid | |
img_url = "https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png" | |
raw_image = load_image(img_url).resize((768, 768)) | |
raw_image | |
``` | |
Use the [`~StableDiffusionDiffEditPipeline.generate_mask`] function to generate the image mask. You'll need to pass it the `source_prompt` and `target_prompt` to specify what to edit in the image: | |
```py | |
from PIL import Image | |
source_prompt = "a bowl of fruits" | |
target_prompt = "a basket of pears" | |
mask_image = pipeline.generate_mask( | |
image=raw_image, | |
source_prompt=source_prompt, | |
target_prompt=target_prompt, | |
) | |
Image.fromarray((mask_image.squeeze()*255).astype("uint8"), "L").resize((768, 768)) | |
``` | |
Next, create the inverted latents and pass it a caption describing the image: | |
```py | |
inv_latents = pipeline.invert(prompt=source_prompt, image=raw_image).latents | |
``` | |
Finally, pass the image mask and inverted latents to the pipeline. The `target_prompt` becomes the `prompt` now, and the `source_prompt` is used as the `negative_prompt`: | |
```py | |
output_image = pipeline( | |
prompt=target_prompt, | |
mask_image=mask_image, | |
image_latents=inv_latents, | |
negative_prompt=source_prompt, | |
).images[0] | |
mask_image = Image.fromarray((mask_image.squeeze()*255).astype("uint8"), "L").resize((768, 768)) | |
make_image_grid([raw_image, mask_image, output_image], rows=1, cols=3) | |
``` | |
<div class="flex gap-4"> | |
<div> | |
<img class="rounded-xl" src="https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png"/> | |
<figcaption class="mt-2 text-center text-sm text-gray-500">original image</figcaption> | |
</div> | |
<div> | |
<img class="rounded-xl" src="https://github.com/Xiang-cd/DiffEdit-stable-diffusion/blob/main/assets/target.png?raw=true"/> | |
<figcaption class="mt-2 text-center text-sm text-gray-500">edited image</figcaption> | |
</div> | |
</div> | |
## Generate source and target embeddings | |
The source and target embeddings can be automatically generated with the [Flan-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5) model instead of creating them manually. | |
Load the Flan-T5 model and tokenizer from the π€ Transformers library: | |
```py | |
import torch | |
from transformers import AutoTokenizer, T5ForConditionalGeneration | |
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large") | |
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large", device_map="auto", torch_dtype=torch.float16) | |
``` | |
Provide some initial text to prompt the model to generate the source and target prompts. | |
```py | |
source_concept = "bowl" | |
target_concept = "basket" | |
source_text = f"Provide a caption for images containing a {source_concept}. " | |
"The captions should be in English and should be no longer than 150 characters." | |
target_text = f"Provide a caption for images containing a {target_concept}. " | |
"The captions should be in English and should be no longer than 150 characters." | |
``` | |
Next, create a utility function to generate the prompts: | |
```py | |
@torch.no_grad() | |
def generate_prompts(input_prompt): | |
input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids.to("cuda") | |
outputs = model.generate( | |
input_ids, temperature=0.8, num_return_sequences=16, do_sample=True, max_new_tokens=128, top_k=10 | |
) | |
return tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
source_prompts = generate_prompts(source_text) | |
target_prompts = generate_prompts(target_text) | |
print(source_prompts) | |
print(target_prompts) | |
``` | |
<Tip> | |
Check out the [generation strategy](https://huggingface.co/docs/transformers/main/en/generation_strategies) guide if you're interested in learning more about strategies for generating different quality text. | |
</Tip> | |
Load the text encoder model used by the [`StableDiffusionDiffEditPipeline`] to encode the text. You'll use the text encoder to compute the text embeddings: | |
```py | |
import torch | |
from diffusers import StableDiffusionDiffEditPipeline | |
pipeline = StableDiffusionDiffEditPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16, use_safetensors=True | |
) | |
pipeline.enable_model_cpu_offload() | |
pipeline.enable_vae_slicing() | |
@torch.no_grad() | |
def embed_prompts(sentences, tokenizer, text_encoder, device="cuda"): | |
embeddings = [] | |
for sent in sentences: | |
text_inputs = tokenizer( | |
sent, | |
padding="max_length", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
prompt_embeds = text_encoder(text_input_ids.to(device), attention_mask=None)[0] | |
embeddings.append(prompt_embeds) | |
return torch.concatenate(embeddings, dim=0).mean(dim=0).unsqueeze(0) | |
source_embeds = embed_prompts(source_prompts, pipeline.tokenizer, pipeline.text_encoder) | |
target_embeds = embed_prompts(target_prompts, pipeline.tokenizer, pipeline.text_encoder) | |
``` | |
Finally, pass the embeddings to the [`~StableDiffusionDiffEditPipeline.generate_mask`] and [`~StableDiffusionDiffEditPipeline.invert`] functions, and pipeline to generate the image: | |
```diff | |
from diffusers import DDIMInverseScheduler, DDIMScheduler | |
from diffusers.utils import load_image, make_image_grid | |
from PIL import Image | |
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config) | |
pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config) | |
img_url = "https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png" | |
raw_image = load_image(img_url).resize((768, 768)) | |
mask_image = pipeline.generate_mask( | |
image=raw_image, | |
- source_prompt=source_prompt, | |
- target_prompt=target_prompt, | |
+ source_prompt_embeds=source_embeds, | |
+ target_prompt_embeds=target_embeds, | |
) | |
inv_latents = pipeline.invert( | |
- prompt=source_prompt, | |
+ prompt_embeds=source_embeds, | |
image=raw_image, | |
).latents | |
output_image = pipeline( | |
mask_image=mask_image, | |
image_latents=inv_latents, | |
- prompt=target_prompt, | |
- negative_prompt=source_prompt, | |
+ prompt_embeds=target_embeds, | |
+ negative_prompt_embeds=source_embeds, | |
).images[0] | |
mask_image = Image.fromarray((mask_image.squeeze()*255).astype("uint8"), "L") | |
make_image_grid([raw_image, mask_image, output_image], rows=1, cols=3) | |
``` | |
## Generate a caption for inversion | |
While you can use the `source_prompt` as a caption to help generate the partially inverted latents, you can also use the [BLIP](https://huggingface.co/docs/transformers/model_doc/blip) model to automatically generate a caption. | |
Load the BLIP model and processor from the π€ Transformers library: | |
```py | |
import torch | |
from transformers import BlipForConditionalGeneration, BlipProcessor | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16, low_cpu_mem_usage=True) | |
``` | |
Create a utility function to generate a caption from the input image: | |
```py | |
@torch.no_grad() | |
def generate_caption(images, caption_generator, caption_processor): | |
text = "a photograph of" | |
inputs = caption_processor(images, text, return_tensors="pt").to(device="cuda", dtype=caption_generator.dtype) | |
caption_generator.to("cuda") | |
outputs = caption_generator.generate(**inputs, max_new_tokens=128) | |
# offload caption generator | |
caption_generator.to("cpu") | |
caption = caption_processor.batch_decode(outputs, skip_special_tokens=True)[0] | |
return caption | |
``` | |
Load an input image and generate a caption for it using the `generate_caption` function: | |
```py | |
from diffusers.utils import load_image | |
img_url = "https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png" | |
raw_image = load_image(img_url).resize((768, 768)) | |
caption = generate_caption(raw_image, model, processor) | |
``` | |
<div class="flex justify-center"> | |
<figure> | |
<img class="rounded-xl" src="https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png"/> | |
<figcaption class="text-center">generated caption: "a photograph of a bowl of fruit on a table"</figcaption> | |
</figure> | |
</div> | |
Now you can drop the caption into the [`~StableDiffusionDiffEditPipeline.invert`] function to generate the partially inverted latents! | |