File size: 2,491 Bytes
234eac0
 
 
 
 
 
 
 
 
249d2c8
234eac0
 
 
 
249d2c8
234eac0
 
 
 
 
 
 
 
 
 
249d2c8
234eac0
 
 
 
249d2c8
 
 
 
 
 
 
234eac0
 
249d2c8
234eac0
 
 
 
 
 
249d2c8
234eac0
 
 
 
 
 
249d2c8
234eac0
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from dotenv import load_dotenv
from openai import AsyncOpenAI, OpenAI
import openai
from typing import List
import os
import asyncio


class EmbeddingModel:
    def __init__(self, embeddings_model_name: str = "text-embedding-3-small", dimensions: int = None):
        load_dotenv()
        self.openai_api_key = os.getenv("OPENAI_API_KEY")
        self.async_client = AsyncOpenAI()
        self.client = OpenAI()
        self.dimensions = dimensions

        if self.openai_api_key is None:
            raise ValueError(
                "OPENAI_API_KEY environment variable is not set. Please set it to your OpenAI API key."
            )
        openai.api_key = self.openai_api_key
        self.embeddings_model_name = embeddings_model_name

    async def async_get_embeddings(self, list_of_text: List[str]) -> List[List[float]]:
        embedding_response = await self.async_client.embeddings.create(
            input=list_of_text, model=self.embeddings_model_name, dimensions=self.dimensions
        )

        return [embeddings.embedding for embeddings in embedding_response.data]

    async def async_get_embeddings_openai(self, list_of_text: List[str]) :
        embedding_response = await self.async_client.embeddings.create(
            input=list_of_text, model=self.embeddings_model_name, dimensions=self.dimensions
        )

        return embedding_response

    async def async_get_embedding(self, text: str) -> List[float]:
        embedding = await self.async_client.embeddings.create(
            input=text, model=self.embeddings_model_name, dimensions=self.dimensions
        )

        return embedding.data[0].embedding

    def get_embeddings(self, list_of_text: List[str]) -> List[List[float]]:
        embedding_response = self.client.embeddings.create(
            input=list_of_text, model=self.embeddings_model_name, dimensions=self.dimensions
        )

        return [embeddings.embedding for embeddings in embedding_response.data]

    def get_embedding(self, text: str) -> List[float]:
        embedding = self.client.embeddings.create(
            input=text, model=self.embeddings_model_name, dimensions=self.dimensions
        )

        return embedding.data[0].embedding


if __name__ == "__main__":
    embedding_model = EmbeddingModel()
    print(asyncio.run(embedding_model.async_get_embedding("Hello, world!")))
    print(
        asyncio.run(
            embedding_model.async_get_embeddings(["Hello, world!", "Goodbye, world!"])
        )
    )