PythonicRAG / aimakerspace /vectordatabase.py
jeevan
versions pinned
249d2c8
raw
history blame
5.94 kB
from enum import Enum
import numpy as np
from collections import defaultdict
from typing import List, Tuple, Callable
from aimakerspace.openai_utils.embedding import EmbeddingModel
import asyncio
from qdrant_client import models, QdrantClient
from qdrant_client.models import PointStruct,VectorParams,Distance
collection_name = "embedding_collection"
def cosine_similarity(vector_a: np.array, vector_b: np.array) -> float:
"""Computes the cosine similarity between two vectors."""
dot_product = np.dot(vector_a, vector_b)
norm_a = np.linalg.norm(vector_a)
norm_b = np.linalg.norm(vector_b)
return dot_product / (norm_a * norm_b)
def euclidean_distance(vector_a: np.array, vector_b: np.array) -> float:
"""Computes the Euclidean distance between two vectors."""
return np.sqrt(np.sum((vector_a - vector_b) ** 2))
def manhattan_distance(vector_a: np.array, vector_b: np.array) -> float:
"""Computes the Manhattan distance between two vectors."""
return np.sum(np.abs(vector_a - vector_b))
def minkowski_distance(vector_a: np.array, vector_b: np.array, p: float) -> float:
"""
Computes the Minkowski distance between two vectors.
Parameters:
vector_a (np.array): First vector.
vector_b (np.array): Second vector.
p (float): The order of the norm. For example, p=1 gives Manhattan distance, p=2 gives Euclidean distance.
Returns:
float: Minkowski distance between vector_a and vector_b.
"""
# Ensure the input vectors are NumPy arrays
vector_a = np.asarray(vector_a)
vector_b = np.asarray(vector_b)
# Compute Minkowski distance
distance = np.sum(np.abs(vector_a - vector_b) ** p) ** (1 / p)
return distance
class DistanceMeasure(Enum):
COSINE_SIMILARITY = cosine_similarity
EUCLIDEAN_DISTANCE = euclidean_distance
MANHATTAN_DISTANCE = manhattan_distance
MINKOWSKI_DISTANCE = minkowski_distance
class VectorDatabaseOptions(Enum):
DICTIONARY = "dictionary"
QDRANT = "qdrant"
class VectorDatabase:
def __init__(
self,
vector_db_options: VectorDatabaseOptions,
embedding_model: EmbeddingModel = None,
):
self.vectors = None
self.vector_db_options = vector_db_options
self.embedding_model = embedding_model or EmbeddingModel()
if vector_db_options == VectorDatabaseOptions.DICTIONARY:
self.vectors = defaultdict(np.array)
if vector_db_options == VectorDatabaseOptions.QDRANT:
self.qdrant_client = QdrantClient(":memory:")
def insert(self, key: str, vector: np.array) -> None:
self.vectors[key] = vector
def search(
self,
query_vector: np.array,
k: int,
distance_measure: Callable = cosine_similarity,
) -> List[Tuple[str, float]]:
scores = [
(key, distance_measure(query_vector, vector))
for key, vector in self.vectors.items()
]
return sorted(scores, key=lambda x: x[1], reverse=True)[:k]
def search_by_text(
self,
query_text: str,
k: int,
distance_measure: Callable = cosine_similarity,
return_as_text: bool = False,
) -> List[Tuple[str, float]]:
query_vector = self.embedding_model.get_embedding(query_text)
if self.vector_db_options == VectorDatabaseOptions.DICTIONARY:
results = self.search(query_vector, k, distance_measure)
return [result[0] for result in results] if return_as_text else results
if self.vector_db_options == VectorDatabaseOptions.QDRANT:
search_result = self.qdrant_client.search(collection_name,query_vector=query_vector)
return [(point.payload["text"],point.score) for point in search_result]
def retrieve_from_key(self, key: str) -> np.array:
return self.vectors.get(key, None)
async def abuild_from_list(self, list_of_text: List[str]) -> "VectorDatabase":
if self.vector_db_options == VectorDatabaseOptions.DICTIONARY:
embeddings = await self.embedding_model.async_get_embeddings(list_of_text)
for text, embedding in zip(list_of_text, embeddings):
self.insert(text, np.array(embedding))
if self.vector_db_options == VectorDatabaseOptions.QDRANT:
embeddings_response = await self.embedding_model.async_get_embeddings_openai(list_of_text)
points = [
PointStruct(
id=idx,
vector=data.embedding,
payload={"text": text},
)
for idx, (data, text) in enumerate(zip(embeddings_response.data, list_of_text))
]
self.qdrant_client.create_collection(
collection_name,
vectors_config=VectorParams(
size=self.embedding_model.dimensions,
distance=Distance.COSINE,
),
)
self.qdrant_client.upsert(collection_name, points)
return self
if __name__ == "__main__":
list_of_text = [
"I like to eat broccoli and bananas.",
"I ate a banana and spinach smoothie for breakfast.",
"Chinchillas and kittens are cute.",
"My sister adopted a kitten yesterday.",
"Look at this cute hamster munching on a piece of broccoli.",
]
vector_db = VectorDatabase()
vector_db = asyncio.run(vector_db.abuild_from_list(list_of_text))
k = 2
searched_vector = vector_db.search_by_text("I think fruit is awesome!", k=k)
print(f"Closest {k} vector(s):", searched_vector)
retrieved_vector = vector_db.retrieve_from_key(
"I like to eat broccoli and bananas."
)
print("Retrieved vector:", retrieved_vector)
relevant_texts = vector_db.search_by_text(
"I think fruit is awesome!", k=k, return_as_text=True
)
print(f"Closest {k} text(s):", relevant_texts)