img2img-demo / app.py
jepz's picture
Update app.py
5ad8015 verified
raw
history blame
4.69 kB
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline, StableDiffusionImg2ImgPipeline
from transformers.utils.hub import move_cache
import torch
from PIL import Image
move_cache()
device = "cuda" if torch.cuda.is_available() else "cpu"
# Check if a GPU is available and set the appropriate torch_dtype and device
if torch.cuda.is_available():
torch_dtype = torch.float16
device = "cuda"
else:
torch_dtype = torch.float32
device = "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("Envvi/Inkpunk-Diffusion", torch_dtype=torch_dtype, safety_checker = None, requires_safety_checker = False)
#pipe = DiffusionPipeline.from_pretrained("Envvi/Inkpunk-Diffusion", torch_dtype=torch.float16, variant="fp16")
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
else:
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("Envvi/Inkpunk-Diffusion", torch_dtype=torch_dtype, safety_checker = None, requires_safety_checker = False)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def generate_image(uploaded_image):
# Open the uploaded image
image = Image.open(uploaded_image)
return output
def infer(init_img, prompt, negative_prompt, seed, width, height, guidance_scale, strength):
generator = torch.Generator().manual_seed(seed)
image = pipe(
image = init_img,
prompt = prompt,
negative_prompt = negative_prompt,
guidance_scale = guidance_scale,
strength = strength,
width = width,
height = height,
generator = generator
).images[0]
return image
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Image-to-Image Demo
Currently running on {power_device}.
""")
with gr.Row():
init_img = gr.Image(type="pil")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=1024,
step=1,
value=0,
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
strength = gr.Slider(
label="strength",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.5,
)
gr.Examples(
examples = examples,
inputs = [prompt]
)
run_button.click(
fn = infer,
inputs = [init_img, prompt, negative_prompt, seed, width, height, guidance_scale, strength],
outputs = [result]
)
demo.queue().launch()