File size: 2,761 Bytes
d97734e
 
a236161
d97734e
a236161
d97734e
 
 
 
 
 
 
 
 
 
538aa00
d97734e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
538aa00
 
 
d97734e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f4c315
d97734e
 
90827dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d97734e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import gradio as gr

# Mock function for testing layout
def run_test_power(model_name, real_text, generated_text, N=10):
    return "Prediction: Human (Mocked)"

css = """
#header { text-align: center; font-size: 1.5em; margin-bottom: 20px; }
#output-text { font-weight: bold; font-size: 1.2em; }
"""

# Gradio App
with gr.Blocks(css=css) as app:
    with gr.Row():
        gr.HTML('<div id="header">Human or AI Text Detector</div>')
    with gr.Column():
        gr.Markdown(
            """
            [Paper](https://openreview.net/forum?id=z9j7wctoGV) | [Code](https://github.com/xLearn-AU/R-Detect) | [Contact](mailto:[email protected])
            """
        )
    with gr.Row():
        input_text = gr.Textbox(
            label="Input Text",
            placeholder="Enter the text to check",
            lines=8,
        )
    with gr.Row():
        model_name = gr.Dropdown(
            [
                "gpt2-medium",
                "gpt2-large",
                "t5-large",
                "t5-small",
                "roberta-base",
                "roberta-base-openai-detector",
                "chatgpt-detector-roberta",
                "gpt3-small-finetune-cnndaily-news",
                "gpt-neo-125m",
                "falcon-rw-1b",
            ],
            label="Select Model",
            value="gpt2-medium",
        )
    with gr.Row():
        submit_button = gr.Button("Run Detection", variant="primary")
        clear_button = gr.Button("Clear", variant="secondary")
    with gr.Row():
        output = gr.Textbox(
            label="Prediction",
            placeholder="Prediction: Human or AI",
            elem_id="output-text",
        )
    submit_button.click(
        run_test_power, inputs=[model_name, input_text, input_text], outputs=output
    )
    clear_button.click(lambda: ("", ""), inputs=[], outputs=[input_text, output])
    with gr.Accordion("Disclaimer", open=False):
        gr.Markdown(
            """
            - **Disclaimer**: This tool is for demonstration purposes only. It is not a foolproof AI detector.
            - **Accuracy**: Results may vary based on input length and quality.
            """
        )
    with gr.Accordion("Citations", open=False):
        gr.Markdown(
            """
            ```
            @inproceedings{zhangs2024MMDMP,
                title={Detecting Machine-Generated Texts by Multi-Population Aware Optimization for Maximum Mean Discrepancy},
                author={Zhang, Shuhai and Song, Yiliao and Yang, Jiahao and Li, Yuanqing and Han, Bo and Tan, Mingkui},
                booktitle = {International Conference on Learning Representations (ICLR)},
                year={2024}
            }
            ```
            """
        )

app.launch()