File size: 4,475 Bytes
d97734e
936b250
 
 
 
 
 
 
 
 
d97734e
a236161
d97734e
afd1fe2
d97734e
936b250
 
 
afd1fe2
 
 
 
 
 
 
 
 
 
936b250
 
 
d97734e
4afc786
d97734e
936b250
 
 
 
 
63c0903
fa64871
899f27e
 
 
011ac7a
02185e1
5f71889
8df8252
 
 
 
5f71889
 
8df8252
f10758b
5f71889
 
 
 
 
b2f5f8e
 
8946536
4cb0ca9
02185e1
 
 
 
14ba27e
02185e1
76c593e
7c8d189
5f76850
6598d57
5f76850
 
 
 
 
 
 
 
 
 
e40a325
d97734e
 
 
 
 
936b250
fa64871
53c66e2
 
 
 
 
 
 
 
 
d97734e
 
 
936b250
d97734e
b2f5f8e
d97734e
afd1fe2
 
53c66e2
afd1fe2
1569480
afd1fe2
d97734e
 
 
afd1fe2
 
 
d97734e
 
d3ee676
1569480
d97734e
8946536
bd0295f
d3ee676
afd1fe2
d97734e
936b250
6598d57
53c66e2
 
 
 
 
6598d57
53c66e2
 
 
 
 
 
 
 
 
 
d97734e
b2f5f8e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import gradio as gr
import spaces


# TOKENIZER = 
# MINIMUM_TOKENS = 64

# def count_tokens(text):
#     return len(TOKENIZER(text).input_ids)


# Mock function for testing layout
def run_test_power(model_name, real_text, generated_text, N=10):
    return f"Prediction: Human (Mocked for {model_name})"



# Change mode name
#def change_mode(mode):
#    if mode == "Faster Model":
#        .change_mode("t5-small")
#    elif mode == "Medium Model":
#        .change_mode("roberta-base-openai-detector")
#    elif mode == "Powerful Model":
#        .change_mode("falcon-rw-1b")
#    else:
#        gr.Error(f"Invaild mode selected.")
#    return mode



css = """
#header { text-align: center; font-size: 3em; margin-bottom: 20px; }
#output-text { font-weight: bold; font-size: 1.2em; }
.links { 
    display: flex; 
    justify-content: flex-end; 
    gap: 10px; 
    margin-right: 10px; 
    align-items: center;
}
.separator {
    margin: 0 5px;
    color: black;
}

/* Adjusting layout for Input Text and Inference Result */
.input-row {
    display: flex;
    width: 100%;
}

.input-text {
    flex: 3;  /* 4 parts of the row */
    margin-right: 1px;
}

.output-text {
    flex: 1;  /* 1 part of the row */
}

/* Set button widths to match the Select Model width */
.button {
    width: 250px;  /* Same as the select box width */
    height: 100px;  /* Button height */
}

/* Set height for the Select Model dropdown */
.select {
    height: 100px;  /* Set height to 100px */
}

/* Adjust the width for the accordion and prevent layout change */
.gradio-accordion {
    width: 100%;  /* Full width for accordions */
    max-height: 200px;  /* Set a maximum height */
    overflow-y: auto;  /* Allow scroll if content exceeds max height */
    margin-bottom: 10px;  /* Space below the accordion */
}

/* Set the maximum height and prevent overflow for the accordion content */
.gradio-accordion .accordion-content {
    max-height: 200px;
    overflow-y: auto;  /* Add vertical scrollbar if content overflows */
}
"""

# Gradio App
with gr.Blocks(css=css) as app:
    with gr.Row():
        gr.HTML('<div id="header">R-detect On HuggingFace</div>')
    with gr.Row():
        gr.HTML("""
        <div class="links">
            <a href="https://openreview.net/forum?id=z9j7wctoGV" target="_blank">Paper</a>
            <span class="separator">|</span>
            <a href="https://github.com/xLearn-AU/R-Detect" target="_blank">Code</a>
            <span class="separator">|</span>
            <a href="mailto:[email protected]" target="_blank">Contact</a>
        </div>
        """)
    with gr.Row():
        input_text = gr.Textbox(
            label="Input Text",
            placeholder="Enter Text Here",
            lines=8,
            elem_classes=["input-text"],  # Applying the CSS class
        )
        output = gr.Textbox(
            label="Inference Result",
            placeholder="Made by Human or AI",
            elem_id="output-text",
            elem_classes=["output-text"],
        )
    with gr.Row():
        model_name = gr.Dropdown(
            [
                "Faster Model",
                "Medium Model",
                "Powerful Model",
            ],
            label="Select Model",
            value="Medium Model",
            elem_classes=["select"],
        )
        submit_button = gr.Button("Run Detection", variant="primary", elem_classes=["button"])
        clear_button = gr.Button("Clear", variant="secondary", elem_classes=["button"])
    
    submit_button.click(run_test_power, inputs=[model_name, input_text, input_text], outputs=output)
    clear_button.click(lambda: ("", ""), inputs=[], outputs=[input_text, output])

    with gr.Accordion("Disclaimer", open=False):
        gr.Markdown("""
        - **Disclaimer**: This tool is for demonstration purposes only. It is not a foolproof AI detector.
        - **Accuracy**: Results may vary based on input length and quality.
        """)

    with gr.Accordion("Citations", open=False):
        gr.Markdown("""
        ```
        @inproceedings{zhangs2024MMDMP,
            title={Detecting Machine-Generated Texts by Multi-Population Aware Optimization for Maximum Mean Discrepancy},
            author={Zhang, Shuhai and Song, Yiliao and Yang, Jiahao and Li, Yuanqing and Han, Bo and Tan, Mingkui},
            booktitle = {International Conference on Learning Representations (ICLR)},
            year={2024}
        }
        ```
        """)

app.launch()