Spaces:
Runtime error
Runtime error
File size: 3,943 Bytes
d97734e 936b250 d97734e a236161 d97734e afd1fe2 d97734e 936b250 afd1fe2 936b250 d97734e 936b250 d97734e 936b250 63c0903 fa64871 899f27e 011ac7a 53c66e2 76c593e 53c66e2 b2f5f8e 5f71889 8df8252 5f71889 8df8252 f10758b 5f71889 b2f5f8e 8946536 717d8b8 76c593e d97734e 936b250 fa64871 53c66e2 d97734e 936b250 d97734e b2f5f8e d97734e afd1fe2 53c66e2 afd1fe2 5f71889 afd1fe2 d97734e afd1fe2 d97734e d3ee676 d97734e 8946536 d97734e d3ee676 afd1fe2 d97734e 936b250 90827dd 53c66e2 90827dd 53c66e2 d97734e b2f5f8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import gradio as gr
import spaces
# TOKENIZER =
# MINIMUM_TOKENS = 64
# def count_tokens(text):
# return len(TOKENIZER(text).input_ids)
# Mock function for testing layout
def run_test_power(model_name, real_text, generated_text, N=10):
return f"Prediction: Human (Mocked for {model_name})"
# Change mode name
#def change_mode(mode):
# if mode == "Faster Model":
# .change_mode("t5-small")
# elif mode == "Medium Model":
# .change_mode("roberta-base-openai-detector")
# elif mode == "Powerful Model":
# .change_mode("falcon-rw-1b")
# else:
# gr.Error(f"Invaild mode selected.")
# return mode
css = """
#header { text-align: center; font-size: 1.5em; margin-bottom: 20px; }
#output-text { font-weight: bold; font-size: 1.2em; }
.links {
display: flex;
justify-content: flex-end;
gap: 10px;
margin-right: 10px;
align-items: center;
}
.separator {
margin: 0 5px;
color: black;
}
.row {
display: flex;
justify-content: center;
width: 100%;
}
.gradio-row input, .gradio-row select {
width: 250px; /* Set all elements to the same width */
margin: 5px;
}
/* Adjusting layout for Input Text and Inference Result */
.input-row {
display: flex;
width: 100%;
}
.input-text {
flex: 3; /* 4 parts of the row */
margin-right: 1px;
}
.output-text {
flex: 1; /* 1 part of the row */
}
/* Set button widths to match the Select Model width */
.button {
width: 250px; /* Same as the select box width */
margin: 20px
}
"""
# Gradio App
with gr.Blocks(css=css) as app:
with gr.Row():
gr.HTML('<div id="header">R-detect On HuggingFace</div>')
with gr.Row():
gr.HTML("""
<div class="links">
<a href="https://openreview.net/forum?id=z9j7wctoGV" target="_blank">Paper</a>
<span class="separator">|</span>
<a href="https://github.com/xLearn-AU/R-Detect" target="_blank">Code</a>
<span class="separator">|</span>
<a href="mailto:[email protected]" target="_blank">Contact</a>
</div>
""")
with gr.Row():
input_text = gr.Textbox(
label="Input Text",
placeholder="Enter Text Here",
lines=8,
elem_classes=["input-text"], # Applying the CSS class
)
output = gr.Textbox(
label="Inference Result",
placeholder="Made by Human or AI",
elem_id="output-text",
elem_classes=["output-text"]
)
with gr.Row():
model_name = gr.Dropdown(
[
"Faster Model",
"Medium Model",
"Powerful Model",
],
label="Select Model",
value="Medium Model",
)
submit_button = gr.Button("Run Detection", variant="primary", elem_classes=["button"])
clear_button = gr.Button("Clear", variant="secondary")
submit_button.click(run_test_power, inputs=[model_name, input_text, input_text], outputs=output)
clear_button.click(lambda: ("", ""), inputs=[], outputs=[input_text, output])
with gr.Accordion("Disclaimer", open=False):
gr.Markdown("""
- **Disclaimer**: This tool is for demonstration purposes only. It is not a foolproof AI detector.
- **Accuracy**: Results may vary based on input length and quality.
""")
with gr.Accordion("Citations", open=False):
gr.Markdown("""
```
@inproceedings{zhangs2024MMDMP,
title={Detecting Machine-Generated Texts by Multi-Population Aware Optimization for Maximum Mean Discrepancy},
author={Zhang, Shuhai and Song, Yiliao and Yang, Jiahao and Li, Yuanqing and Han, Bo and Tan, Mingkui},
booktitle = {International Conference on Learning Representations (ICLR)},
year={2024}
}
```
""")
app.launch() |