|
import gradio as gr |
|
import uuid |
|
import os |
|
from typing import Optional |
|
import tempfile |
|
from pydub import AudioSegment |
|
import re |
|
import subprocess |
|
import numpy as np |
|
import soundfile as sf |
|
import sounddevice as sd |
|
import time |
|
import sox |
|
from io import BytesIO |
|
import asyncio |
|
import aiohttp |
|
from moviepy.editor import VideoFileClip |
|
import threading |
|
import socketio |
|
import base64 |
|
|
|
ASR_API = "http://astarwiz.com:9998/asr" |
|
TTS_SPEAK_SERVICE = 'http://astarwiz.com:9603/speak' |
|
TTS_WAVE_SERVICE = 'http://astarwiz.com:9603/wave' |
|
|
|
|
|
bSegByPunct = True |
|
|
|
|
|
LANGUAGE_MAP = { |
|
"en": "English", |
|
"ma": "Malay", |
|
"ta": "Tamil", |
|
"zh": "Chinese" |
|
} |
|
|
|
DEVELOPER_PASSWORD = os.getenv("DEV_PWD") |
|
RAPID_API_KEY = os.getenv("RAPID_API_KEY") |
|
|
|
AVAILABLE_SPEAKERS = { |
|
"en": ["MS"], |
|
"ma": ["msFemale"], |
|
"ta": ["ta_female1"], |
|
"zh": ["childChinese2"] |
|
} |
|
|
|
|
|
audio_update_event = asyncio.Event() |
|
acc_cosy_audio = None |
|
|
|
|
|
TTS_SOCKET_SERVER = "http://astarwiz.com:9444" |
|
|
|
sio = socketio.AsyncClient() |
|
|
|
@sio.on('connect') |
|
def on_connect(): |
|
print('Connected to server') |
|
|
|
@sio.on('disconnect') |
|
def on_disconnect(): |
|
print('Disconnected from server') |
|
|
|
@sio.on('audio_chunk') |
|
async def on_audio_chunk(data): |
|
global translation_update, audio_update, acc_cosy_audio |
|
|
|
translated_seg_txt = data['trans_text'] |
|
with translation_lock: |
|
translation_update["content"] = translation_update["content"] + " " + translated_seg_txt |
|
translation_update["new"] = True |
|
|
|
audio_base64 = data['audio'] |
|
audio_bytes = base64.b64decode(audio_base64) |
|
audio_np = np.frombuffer(audio_bytes, dtype=np.int16) |
|
|
|
if (acc_cosy_audio is None): |
|
acc_cosy_audio = audio_np |
|
else: |
|
acc_cosy_audio = np.concatenate((acc_cosy_audio, audio_np)) |
|
|
|
with audio_lock: |
|
audio_update["content"] = (22050, audio_np) |
|
audio_update["new"] = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
@sio.on('tts_complete') |
|
async def on_tts_complete(): |
|
await sio.disconnect() |
|
print("Disconnected from server after TTS completion") |
|
|
|
audio_update_event.set() |
|
|
|
|
|
|
|
|
|
transcription_update = {"content": "", "new": False} |
|
translation_update = {"content": "", "new": False} |
|
audio_update = {"content": None, "new": False} |
|
|
|
|
|
transcription_lock = threading.Lock() |
|
translation_lock = threading.Lock() |
|
audio_lock = threading.Lock() |
|
|
|
def replace_audio_in_video(video_path, audio_path, output_path): |
|
command = [ |
|
'ffmpeg', |
|
'-i', video_path, |
|
'-i', audio_path, |
|
'-c:v', 'copy', |
|
'-map', '0:v:0', |
|
'-map', '1:a:0', |
|
'-shortest', |
|
output_path |
|
] |
|
subprocess.run(command, check=True) |
|
return output_path |
|
|
|
async def replace_audio_and_generate_video(temp_video_path, gradio_audio): |
|
print ("gradio_audio:", gradio_audio) |
|
if not temp_video_path or gradio_audio is None: |
|
return "Both video and audio are required to replace audio.", None |
|
|
|
if not os.path.exists(temp_video_path): |
|
return "Video file not found.", None |
|
|
|
|
|
sample_rate, audio_data = gradio_audio |
|
|
|
|
|
if not isinstance(audio_data, np.ndarray): |
|
audio_data = np.array(audio_data) |
|
|
|
|
|
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_audio_file: |
|
original_audio_path = temp_audio_file.name |
|
sf.write(original_audio_path, audio_data, sample_rate) |
|
|
|
|
|
video_clip = VideoFileClip(temp_video_path) |
|
video_duration = video_clip.duration |
|
video_clip.close() |
|
|
|
|
|
audio_duration = len(audio_data) / sample_rate |
|
|
|
|
|
tempo_factor = audio_duration / video_duration |
|
|
|
|
|
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_audio_file: |
|
adjusted_audio_path = temp_audio_file.name |
|
|
|
|
|
tfm = sox.Transformer() |
|
tfm.tempo(tempo_factor, 's') |
|
tfm.build(original_audio_path, adjusted_audio_path) |
|
|
|
|
|
output_video_path = os.path.join(tempfile.gettempdir(), f"output_{uuid.uuid4()}.mp4") |
|
|
|
try: |
|
replace_audio_in_video(temp_video_path, adjusted_audio_path, output_video_path) |
|
return "Audio replaced successfully.", output_video_path |
|
except subprocess.CalledProcessError as e: |
|
return f"Error replacing audio: {str(e)}", None |
|
finally: |
|
os.unlink(original_audio_path) |
|
os.unlink(adjusted_audio_path) |
|
|
|
async def fetch_youtube_id(youtube_url: str) -> str: |
|
if 'v=' in youtube_url: |
|
return youtube_url.split("v=")[1].split("&")[0] |
|
elif 'youtu.be/' in youtube_url: |
|
return youtube_url.split("youtu.be/")[1] |
|
elif 'shorts' in youtube_url: |
|
return youtube_url.split("/")[-1] |
|
else: |
|
raise Exception("Unsupported URL format") |
|
|
|
async def download_youtube_audio(youtube_url: str, output_dir: Optional[str] = None) -> Optional[tuple[str, str]]: |
|
video_id = await fetch_youtube_id(youtube_url) |
|
|
|
if not video_id: |
|
return None |
|
|
|
if output_dir is None: |
|
output_dir = tempfile.gettempdir() |
|
|
|
output_filename = os.path.join(output_dir, f"{video_id}.mp3") |
|
temp_filename = os.path.join(output_dir, f"{video_id}.mp4") |
|
if os.path.exists(output_filename) and os.path.exists(temp_filename): |
|
return (output_filename, temp_filename) |
|
|
|
url = "https://youtube86.p.rapidapi.com/api/youtube/links" |
|
headers = { |
|
'Content-Type': 'application/json', |
|
'x-rapidapi-host': 'youtube86.p.rapidapi.com', |
|
'x-rapidapi-key': RAPID_API_KEY |
|
} |
|
data = { |
|
"url": youtube_url |
|
} |
|
|
|
async with aiohttp.ClientSession() as session: |
|
async with session.post(url, headers=headers, json=data) as response: |
|
if response.status == 200: |
|
result = await response.json() |
|
for url in result[0]['urls']: |
|
if url.get('isBundle'): |
|
audio_url = url['url'] |
|
extension = url['extension'] |
|
async with session.get(audio_url) as audio_response: |
|
if audio_response.status == 200: |
|
content = await audio_response.read() |
|
temp_filename = os.path.join(output_dir, f"{video_id}.{extension}") |
|
with open(temp_filename, 'wb') as audio_file: |
|
audio_file.write(content) |
|
|
|
audio = AudioSegment.from_file(temp_filename, format=extension) |
|
audio = audio.set_frame_rate(16000) |
|
audio.export(output_filename, format="mp3", parameters=["-ar", "16000"]) |
|
return (output_filename, temp_filename) |
|
else: |
|
print("Error:", response.status, await response.text()) |
|
return None |
|
punctuation_marks = r'([\.!?!?。])' |
|
def split_text_with_punctuation(text): |
|
|
|
split_text = re.split(punctuation_marks, text) |
|
|
|
combined_segments = [] |
|
|
|
|
|
for i in range(0, len(split_text) - 1, 2): |
|
combined_segments.append(split_text[i] + split_text[i + 1]) |
|
|
|
|
|
if len(split_text) % 2 != 0 and split_text[-1]: |
|
combined_segments.append(split_text[-1]) |
|
|
|
|
|
final_segments = [] |
|
for segment in combined_segments: |
|
words = segment.split() |
|
if len(words) > 50: |
|
|
|
for j in range(0, len(words), 50): |
|
final_segments.append(' '.join(words[j:j+50])) |
|
else: |
|
final_segments.append(segment) |
|
|
|
return [segment for segment in final_segments if segment] |
|
|
|
def extract_segments(text): |
|
pattern = r'\[(\d+\.\d+)s\s*->\s*(\d+\.\d+)s\]\s*(.*?)(?=\[\d+\.\d+s|\Z)' |
|
matches = re.findall(pattern, text, re.DOTALL) |
|
|
|
if not matches: |
|
return [] |
|
|
|
segments = [] |
|
for start, end, content in matches: |
|
segments.append({ |
|
'start': float(start), |
|
'end': float(end), |
|
'text': content.strip() |
|
}) |
|
|
|
return segments |
|
|
|
def adjust_tempo_pysox_array(gradio_audio, duration): |
|
|
|
sample_rate, audio_data = gradio_audio |
|
|
|
if not isinstance(audio_data, np.ndarray): |
|
audio_data = np.array(audio_data) |
|
|
|
current_duration = len(audio_data) / sample_rate |
|
|
|
tempo_factor = current_duration / duration |
|
|
|
tfm = sox.Transformer() |
|
tfm.tempo(tempo_factor) |
|
|
|
adjusted_audio = tfm.build_array(input_array=audio_data, sample_rate_in=sample_rate) |
|
|
|
target_length = int(sample_rate * duration) |
|
if len(adjusted_audio) > target_length: |
|
adjusted_audio = adjusted_audio[:target_length] |
|
else: |
|
|
|
adjusted_audio = np.pad(adjusted_audio, (0, target_length - len(adjusted_audio)), mode='constant') |
|
|
|
return sample_rate, adjusted_audio |
|
|
|
async def inference_via_llm_api(input_text, min_new_tokens=2, max_new_tokens=64): |
|
print(input_text) |
|
one_vllm_input = f"<|im_start|>system\nYou are a translation expert.<|im_end|>\n<|im_start|>user\n{input_text}<|im_end|>\n<|im_start|>assistant" |
|
vllm_api = 'http://astarwiz.com:2333/' + "v1/completions" |
|
data = { |
|
"prompt": one_vllm_input, |
|
'model': "./Edu-4B-NewTok-V2-20240904/", |
|
'min_tokens': min_new_tokens, |
|
'max_tokens': max_new_tokens, |
|
'temperature': 0.1, |
|
'top_p': 0.75, |
|
'repetition_penalty': 1.1, |
|
"stop_token_ids": [151645, ], |
|
} |
|
async with aiohttp.ClientSession() as session: |
|
async with session.post(vllm_api, headers={"Content-Type": "application/json"}, json=data) as response: |
|
if response.status == 200: |
|
result = await response.json() |
|
if "choices" in result: |
|
return result["choices"][0]['text'].strip() |
|
return "The system got some error during vLLM generation. Please try it again." |
|
|
|
async def transcribe_and_speak(audio, source_lang, target_lang, youtube_url=None, target_speaker=None, progress_tracker=None): |
|
global transcription_update, translation_update, audio_update, acc_cosy_audio,audio_update_event |
|
transcription_update = {"content": "", "new": True} |
|
translation_update = {"content": "", "new": True} |
|
audio_update = {"content": None, "new": True} |
|
acc_cosy_audio =None |
|
video_path = None |
|
audio_update_event.clear() |
|
|
|
|
|
|
|
if youtube_url: |
|
audio = await download_youtube_audio(youtube_url) |
|
if audio is None: |
|
return "Failed to download YouTube audio.", None, None, video_path,(22050, accumulated_audio) |
|
audio, video_path = audio |
|
if not audio: |
|
return "Please provide an audio input or a valid YouTube URL.", None, None, video_path,(22050, accumulated_audio) |
|
|
|
|
|
|
|
file_id = str(uuid.uuid4()) |
|
data = aiohttp.FormData() |
|
data.add_field('file', open(audio, 'rb')) |
|
data.add_field('language', 'ms' if source_lang == 'ma' else source_lang) |
|
data.add_field('model_name', 'whisper-large-v2-local-cs') |
|
if bSegByPunct: |
|
data.add_field('with_timestamp', 'false') |
|
else: |
|
data.add_field('with_timestamp', 'true') |
|
|
|
async with aiohttp.ClientSession() as session: |
|
async with session.post(ASR_API, data=data) as asr_response: |
|
if asr_response.status == 200: |
|
result = await asr_response.json() |
|
transcription = result['text'] |
|
with transcription_lock: |
|
transcription_update["content"] = transcription |
|
transcription_update["new"] = True |
|
else: |
|
return "ASR failed", None, None, video_path,(22050, accumulated_audio) |
|
|
|
|
|
|
|
|
|
|
|
if target_lang == 'en' or target_lang == 'zh': |
|
try: |
|
if not sio.connected: |
|
server_url = TTS_SOCKET_SERVER |
|
await sio.connect(server_url) |
|
print(f"Connected to {server_url}") |
|
|
|
|
|
|
|
tts_request = { |
|
'text': transcription, |
|
'overwrite_prompt': False, |
|
'promptText':"", |
|
'promptAudio':"", |
|
'sourceLang':source_lang, |
|
'targetLang':target_lang |
|
} |
|
await sio.emit('tts_request', tts_request) |
|
|
|
|
|
await audio_update_event.wait() |
|
print('cosy tts complete,',audio_update) |
|
|
|
return transcription, translation_update["content"], audio_update["content"], video_path, (22050, acc_cosy_audio) |
|
|
|
except Exception as e: |
|
print(f"Failed to process request: {str(e)}") |
|
print("let use vits then") |
|
|
|
|
|
|
|
if bSegByPunct: |
|
split_result = split_text_with_punctuation(transcription) |
|
else: |
|
split_result = extract_segments(transcription); |
|
|
|
translate_segments = [] |
|
accumulated_audio = None |
|
sample_rate = 22050 |
|
global is_playing |
|
for i, segment in enumerate(split_result): |
|
if bSegByPunct: |
|
translation_prompt = f"Translate the following text from {LANGUAGE_MAP[source_lang]} to {LANGUAGE_MAP[target_lang]}: {segment}" |
|
else: |
|
translation_prompt = f"Translate the following text from {LANGUAGE_MAP[source_lang]} to {LANGUAGE_MAP[target_lang]}: {segment['text']}" |
|
translated_seg_txt = await inference_via_llm_api(translation_prompt) |
|
translate_segments.append(translated_seg_txt) |
|
print(f"Translation: {translated_seg_txt}") |
|
with translation_lock: |
|
translation_update["content"] = " ".join(translate_segments) |
|
translation_update["new"] = True |
|
|
|
|
|
|
|
|
|
tts_params = { |
|
'language': target_lang, |
|
'speed': 1.1, |
|
'speaker': target_speaker or AVAILABLE_SPEAKERS[target_lang][0], |
|
'text': translated_seg_txt |
|
} |
|
|
|
async with aiohttp.ClientSession() as session: |
|
async with session.get(TTS_SPEAK_SERVICE, params=tts_params) as tts_response: |
|
if tts_response.status == 200: |
|
audio_file = await tts_response.text() |
|
audio_file = audio_file.strip() |
|
audio_url = f"{TTS_WAVE_SERVICE}?file={audio_file}" |
|
async with session.get(audio_url) as response: |
|
content = await response.read() |
|
audio_chunk, sr = sf.read(BytesIO(content)) |
|
|
|
|
|
|
|
|
|
|
|
if accumulated_audio is None: |
|
accumulated_audio = audio_chunk |
|
sample_rate = sr |
|
else: |
|
accumulated_audio = np.concatenate((accumulated_audio, audio_chunk)) |
|
|
|
with audio_lock: |
|
audio_update["content"] = (sample_rate, audio_chunk) |
|
audio_update["new"] = True |
|
else: |
|
print(f"TTS failed for segment: {translated_seg_txt}") |
|
|
|
translated_text = " ".join(translate_segments) |
|
|
|
|
|
print("sigal the playing could stop now. all tts generated") |
|
is_playing =False; |
|
if accumulated_audio is not None: |
|
return transcription, translated_text, audio_update["content"], video_path, (sample_rate,accumulated_audio) |
|
else: |
|
return transcription, translated_text, "TTS failed", video_path, (sample_rate, accumulated_audio) |
|
|
|
""" |
|
async def run_speech_translation(audio, source_lang, target_lang, youtube_url, target_speaker): |
|
temp_video_path = None |
|
transcription, translated_text, audio_chunksr, temp_video_path = await transcribe_and_speak(audio, source_lang, target_lang, youtube_url, target_speaker) |
|
return transcription, translated_text, audio_chunksr, temp_video_path |
|
""" |
|
async def update_transcription(): |
|
global transcription_update |
|
with transcription_lock: |
|
if transcription_update["new"]: |
|
content = transcription_update["content"] |
|
transcription_update["new"] = False |
|
return content |
|
return gr.update() |
|
|
|
async def update_translation(): |
|
global translation_update |
|
with translation_lock: |
|
if translation_update["new"]: |
|
content = translation_update["content"] |
|
translation_update["new"] = False |
|
return content |
|
return gr.update() |
|
|
|
async def update_audio(): |
|
global audio_update |
|
with audio_lock: |
|
if audio_update["new"]: |
|
content = audio_update["content"] |
|
audio_update["new"] = False |
|
return content |
|
return gr.update() |
|
|
|
def disable_button(): |
|
|
|
return gr.update(interactive=False) |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Speech Translation") |
|
|
|
gr.Markdown("Speak into the microphone, upload an audio file, or provide a YouTube URL. The app will translate and speak it back to you.") |
|
|
|
with gr.Row(): |
|
user_audio_input = gr.Audio(sources=["microphone", "upload"], type="filepath") |
|
user_youtube_url = gr.Textbox(label="YouTube URL (optional)") |
|
|
|
with gr.Row(): |
|
user_source_lang = gr.Dropdown(choices=["en", "ma", "ta", "zh"], label="Source Language", value="en") |
|
user_target_lang = gr.Dropdown(choices=["en", "ma", "ta", "zh"], label="Target Language", value="zh") |
|
user_target_speaker = gr.Dropdown(choices=AVAILABLE_SPEAKERS['zh'], label="Target Speaker", value="childChinese2") |
|
|
|
with gr.Row(): |
|
user_button = gr.Button("Translate and Speak", interactive=False) |
|
|
|
with gr.Row(): |
|
user_transcription_output = gr.Textbox(label="Transcription") |
|
user_translation_output = gr.Textbox(label="Translation") |
|
user_audio_output = gr.Audio(label="Translated Speech", visible =False) |
|
user_audio_final = gr.Audio(label="Final total Speech") |
|
status_message = gr.Textbox(label="Status", interactive=False) |
|
|
|
user_video_output = gr.HTML(label="YouTube Video") |
|
|
|
replace_audio_button = gr.Button("Replace Audio", interactive=False, visible =False) |
|
final_video_output = gr.Video(label="Video with Replaced Audio",visible=False) |
|
|
|
temp_video_path = gr.State() |
|
translation_progress = gr.State(0.0) |
|
|
|
async def update_button_state(audio, youtube_url, progress): |
|
print(audio, youtube_url, progress) |
|
|
|
print ("progress:", audio, youtube_url,bool(audio) , bool(youtube_url), progress == 0 or progress == 1) |
|
return gr.Button(interactive=(bool(audio) or bool(youtube_url)) and (progress == 0 or progress == 1)) |
|
|
|
user_audio_input.change( |
|
fn=update_button_state, |
|
inputs=[user_audio_input, user_youtube_url, translation_progress], |
|
outputs=user_button |
|
) |
|
user_youtube_url.change( |
|
fn=update_button_state, |
|
inputs=[user_audio_input, user_youtube_url, translation_progress], |
|
outputs=user_button |
|
) |
|
|
|
|
|
async def run_speech_translation_wrapper(audio, source_lang, target_lang, youtube_url, target_speaker,progress): |
|
|
|
progress = 0.1 |
|
temp_video_path = None |
|
transcription, translated_text, audio_chunksr, temp_video_path, accumulated_aud_buf = await transcribe_and_speak(audio, source_lang, target_lang, youtube_url, target_speaker) |
|
progress = 1 |
|
return transcription, translated_text, audio_chunksr, temp_video_path, "Translation complete", accumulated_aud_buf, gr.update(interactive=True) |
|
|
|
user_button.click( |
|
fn=disable_button, |
|
inputs=[], |
|
outputs=[user_button] |
|
).then( |
|
fn=run_speech_translation_wrapper, |
|
inputs=[user_audio_input, user_source_lang, user_target_lang, user_youtube_url, user_target_speaker, translation_progress], |
|
outputs=[user_transcription_output, user_translation_output, user_audio_output, temp_video_path, status_message,user_audio_final,user_button] |
|
) |
|
|
|
async def update_replace_audio_button(audio_url, video_path): |
|
print("update replace:", audio_url, video_path) |
|
return gr.Button(interactive=bool(audio_url) and bool(video_path)) |
|
|
|
user_audio_output.change( |
|
fn=update_replace_audio_button, |
|
inputs=[user_audio_output, temp_video_path], |
|
outputs=[replace_audio_button] |
|
) |
|
|
|
replace_audio_button.click( |
|
fn=replace_audio_and_generate_video, |
|
inputs=[temp_video_path, user_audio_final], |
|
outputs=[status_message, final_video_output] |
|
) |
|
|
|
async def update_video_embed(youtube_url): |
|
if youtube_url: |
|
try: |
|
video_id = await fetch_youtube_id(youtube_url) |
|
return f'<iframe width="560" height="315" src="https://www.youtube.com/embed/{video_id}" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe>' |
|
except Exception as e: |
|
print(f"Error embedding video: {e}") |
|
return "" |
|
|
|
user_youtube_url.change( |
|
fn=update_video_embed, |
|
inputs=[user_youtube_url], |
|
outputs=[user_video_output] |
|
) |
|
|
|
async def update_target_speakers(target_lang): |
|
return gr.Dropdown(choices=AVAILABLE_SPEAKERS[target_lang], value=AVAILABLE_SPEAKERS[target_lang][0]) |
|
|
|
user_target_lang.change( |
|
fn=update_target_speakers, |
|
inputs=[user_target_lang], |
|
outputs=[user_target_speaker] |
|
) |
|
|
|
async def periodic_update(): |
|
transcription = await update_transcription() |
|
translation = await update_translation() |
|
audio = await update_audio() |
|
return ( |
|
transcription, |
|
translation, |
|
audio |
|
) |
|
|
|
demo.load( |
|
periodic_update, |
|
inputs=[], |
|
outputs=[ |
|
user_transcription_output, |
|
user_translation_output, |
|
user_audio_output, |
|
], |
|
every=0.1 |
|
) |
|
|
|
|
|
user_audio_output.change( |
|
None, |
|
inputs=user_audio_output, |
|
outputs=None, |
|
js=""" |
|
async (audioFilePath) => { |
|
// Debug: Log received audio file path |
|
console.log("Received audio file path:", audioFilePath); |
|
|
|
if (!window.audioQueue) { |
|
window.audioQueue = []; |
|
window.isPlaying = false; |
|
} |
|
|
|
// Ensure the correct URL for the audio file is available |
|
if (audioFilePath && audioFilePath.url) { |
|
console.log("Processing audio file..."); |
|
|
|
try { |
|
// Fetch and decode the audio file |
|
const response = await fetch(audioFilePath.url); |
|
if (!response.ok) { |
|
console.error("Failed to fetch audio file:", response.statusText); |
|
return; |
|
} |
|
|
|
const audioData = await response.arrayBuffer(); |
|
const audioContext = new AudioContext(); |
|
const decodedData = await audioContext.decodeAudioData(audioData); |
|
|
|
// Split the decoded audio buffer into two chunks |
|
const totalDuration = decodedData.duration; |
|
const midPoint = Math.floor(decodedData.length / 2); // Midpoint for splitting |
|
const sampleRate = decodedData.sampleRate; |
|
|
|
// Create two separate AudioBuffers for each chunk |
|
const firstHalfBuffer = audioContext.createBuffer(decodedData.numberOfChannels, midPoint, sampleRate); |
|
const secondHalfBuffer = audioContext.createBuffer(decodedData.numberOfChannels, decodedData.length - midPoint, sampleRate); |
|
|
|
// Copy data from original buffer to the two new buffers |
|
for (let channel = 0; channel < decodedData.numberOfChannels; channel++) { |
|
firstHalfBuffer.copyToChannel(decodedData.getChannelData(channel).slice(0, midPoint), channel, 0); |
|
secondHalfBuffer.copyToChannel(decodedData.getChannelData(channel).slice(midPoint), channel, 0); |
|
} |
|
|
|
// Add both chunks to the queue |
|
window.audioQueue.push(firstHalfBuffer); |
|
window.audioQueue.push(secondHalfBuffer); |
|
console.log("Two audio chunks added to queue. Queue length:", window.audioQueue.length); |
|
|
|
// Function to play the next audio chunk from the queue |
|
const playNextChunk = async () => { |
|
console.log("Attempting to play next chunk. isPlaying:", window.isPlaying); |
|
|
|
if (!window.isPlaying && window.audioQueue.length > 0) { |
|
console.log("Starting playback..."); |
|
window.isPlaying = true; |
|
|
|
// Get the next audio buffer from the queue |
|
const audioBuffer = window.audioQueue.shift(); |
|
console.log("Playing audio chunk from buffer."); |
|
|
|
const source = audioContext.createBufferSource(); |
|
source.buffer = audioBuffer; |
|
source.connect(audioContext.destination); |
|
|
|
// When the audio finishes playing, play the next chunk |
|
source.onended = () => { |
|
console.log("Audio chunk finished playing."); |
|
window.isPlaying = false; |
|
playNextChunk(); // Play the next audio chunk in the queue |
|
}; |
|
|
|
source.start(0); // Start playing the current chunk |
|
console.log("Audio chunk started."); |
|
} else { |
|
console.log("Already playing or queue is empty."); |
|
} |
|
}; |
|
|
|
// Start playing the next chunk if not already playing |
|
playNextChunk(); |
|
|
|
} catch (error) { |
|
console.error("Error during audio playback:", error); |
|
window.isPlaying = false; |
|
} |
|
} else { |
|
console.log("No valid audio file path received."); |
|
} |
|
} |
|
""" |
|
) |
|
|
|
demo.queue() |
|
|
|
|
|
asyncio.run(demo.launch(auth=(os.getenv("DEV_USER"), os.getenv("DEV_PWD")))) |
|
|