Spaces:
Build error
Build error
### Import Section ### | |
import os | |
import re | |
import chainlit as cl | |
from langchain.storage import LocalFileStore | |
from operator import itemgetter | |
from langchain_core.runnables import RunnablePassthrough, RunnableLambda, Runnable, RunnableParallel | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_openai import ChatOpenAI | |
from chainlit.types import AskFileResponse | |
from langchain_community.document_loaders import PyMuPDFLoader | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain_openai.embeddings import OpenAIEmbeddings | |
from qdrant_client import QdrantClient | |
from qdrant_client.models import VectorParams, Distance | |
from langchain.embeddings import CacheBackedEmbeddings | |
from langchain_qdrant import QdrantVectorStore | |
from langchain.schema import StrOutputParser | |
from langchain_core.documents import Document | |
from typing import cast | |
from dotenv import load_dotenv | |
import tempfile | |
### Emvironment Variables ### | |
load_dotenv('.env') | |
### Global Section ### | |
VECTOR_STORE_CACHE = LocalFileStore(root_path = "VECTOR_STORE_CACHE") | |
E2E_CACHE = LocalFileStore(root_path = "E2E_CACHE") | |
#π helper functions | |
def clean_text(text: str) -> str: | |
return re.sub(r'[^a-zA-Z0-9]', '', text) | |
def caching_rag_respnse(question: str, answer:str): | |
E2E_CACHE.mset( [(clean_text(question), answer.encode('utf-8'))] ) | |
def load_cached_response(input) : | |
question = clean_text(input['question']) | |
cached_answer = E2E_CACHE.mget([question])[0] | |
return cached_answer.decode('utf-8') if cached_answer else False | |
#π prompt | |
RAG_SYSTEM_MSG_TEMPLATE = """\ | |
You are a helpful assistant that uses the provided context to answer questions. If Context does not coantain any information to answer Question, just say "I don't know". | |
Question: | |
{question} | |
Context: | |
{context} | |
""" | |
RAG_PROMPT = ChatPromptTemplate([('human', RAG_SYSTEM_MSG_TEMPLATE)]) | |
#π retriever | |
async def get_retriever(file: AskFileResponse): | |
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.pdf') as temp_file: | |
temp_file_path = temp_file.name | |
with open(temp_file_path, 'wb') as f: | |
f.write(file.content) | |
documents = PyMuPDFLoader(temp_file_path).load() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) | |
chunks = await text_splitter.atransform_documents(documents) | |
client = QdrantClient(":memory:") | |
core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small") | |
cached_embedder = CacheBackedEmbeddings.from_bytes_store( | |
underlying_embeddings = core_embeddings, | |
document_embedding_cache = VECTOR_STORE_CACHE, | |
namespace=core_embeddings.model | |
) | |
collection_name = f"pdf_to_parse_{clean_text(file.name)}" | |
if collection_name not in (x.name for x in client.get_collections().collections): | |
client.create_collection( | |
collection_name=collection_name, | |
vectors_config=VectorParams(size=1536, distance=Distance.COSINE), | |
) | |
vectorstore = QdrantVectorStore( | |
client=client, | |
collection_name=collection_name, | |
embedding=cached_embedder | |
) | |
vectorstore.add_documents(chunks) | |
already_exist = False | |
else: | |
vectorstore = QdrantVectorStore( | |
client=client, | |
collection_name=collection_name, | |
embedding=cached_embedder | |
) | |
already_exist = True | |
retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 3}) | |
return retriever, already_exist | |
def get_rag(retriever): | |
chat_model = ChatOpenAI(model="gpt-4o-mini", streaming=True) | |
rag_chain = RunnableParallel( | |
context = retriever, | |
question = lambda x: x | |
)| RAG_PROMPT | chat_model | StrOutputParser() | |
rag_chain = rag_chain.with_config({'run_name':'RAG'}) | |
return rag_chain | |
### On Chat Start (Session Start) Section ### | |
async def on_chat_start(): | |
""" SESSION SPECIFIC CODE HERE """ | |
files = None | |
# Wait for the user to upload a file | |
while files == None: | |
files = await cl.AskFileMessage( | |
content="Hello!! I'm Jet! Please upload a Pdf File file to begin!", | |
accept=["application/pdf"], | |
max_size_mb=10, | |
timeout=180, | |
).send() | |
file = files[0] | |
msg = cl.Message(content=f"Processing `{file.name}`...", disable_human_feedback=True) | |
await msg.send() | |
# get rag chain | |
retriever, already_exist = await get_retriever(file) | |
# retriever, already_exist = await get_retriever(file.name.split('pdf')[0], chunks) | |
rag_chain = get_rag(retriever) | |
# Let the user know that the system is ready | |
if not already_exist: | |
msg.content = f"Processing `{file.name}` done. You can now ask questions!" | |
else: | |
msg.content = f"VectorStore already exist. You can now ask questions!" | |
await msg.update() | |
cl.user_session.set("chain", rag_chain) | |
### Rename Chains ### | |
def rename(orig_author: str): | |
""" RENAME CODE HERE """ | |
rename_dict = {"Assistant": "Jet"} | |
return rename_dict.get(orig_author, orig_author) | |
### On Message Section ### | |
async def main(message): | |
""" | |
MESSAGE CODE HERE | |
""" | |
cached_answer = load_cached_response({'question':message.content}) | |
if cached_answer: | |
msg = cl.Message(content=cached_answer) | |
await msg.send() | |
else: | |
chain = cast(Runnable, cl.user_session.get("chain")) | |
msg = cl.Message(content="") | |
async for stream_resp in chain.astream(message.content): | |
await msg.stream_token(stream_resp) | |
caching_rag_respnse(question=message.content, answer=msg.content) | |
await msg.send() | |