|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TODO: Add a description here.""" |
|
|
|
import evaluate |
|
import datasets |
|
import re |
|
import string |
|
from tqdm import tqdm |
|
from collections import Counter |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:module, |
|
title = {A great new module}, |
|
authors={huggingface, Inc.}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
This new module is designed to solve this great ML task and is crafted with a lot of care. |
|
""" |
|
|
|
|
|
|
|
_KWARGS_DESCRIPTION = """ |
|
Calculates how good are predictions given some references, using certain scores |
|
Args: |
|
predictions: list of predictions to score. Each predictions |
|
should be a string with tokens separated by spaces. |
|
references: list of reference for each prediction. Each |
|
reference should be a string with tokens separated by spaces. |
|
Returns: |
|
accuracy: description of the first score, |
|
another_score: description of the second score, |
|
Examples: |
|
Examples should be written in doctest format, and should illustrate how |
|
to use the function. |
|
|
|
>>> my_new_module = evaluate.load("my_new_module") |
|
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1]) |
|
>>> print(results) |
|
{'accuracy': 1.0} |
|
""" |
|
|
|
|
|
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" |
|
|
|
def remove_(text: str)-> str: |
|
''' λΆνμν κΈ°νΈ μ κ±° ''' |
|
text = re.sub("'", " ", text) |
|
text = re.sub('"', " ", text) |
|
text = re.sub('γ', " ", text) |
|
text = re.sub('γ', " ", text) |
|
text = re.sub('<', " ", text) |
|
text = re.sub('>', " ", text) |
|
text = re.sub('γ', " ", text) |
|
text = re.sub('γ', " ", text) |
|
text = re.sub("\(", " ", text) |
|
text = re.sub("\)", " ", text) |
|
text = re.sub("β", " ", text) |
|
text = re.sub("β", " ", text) |
|
return text |
|
|
|
def white_space_fix(text: str)-> str: |
|
'''μ°μλ κ³΅λ°±μΌ κ²½μ° νλμ 곡백μΌλ‘ λ체''' |
|
return ' '.join(text.split()) |
|
|
|
def remove_punc(text: str)-> str: |
|
'''ꡬλμ μ κ±°''' |
|
exclude = set(string.punctuation) |
|
return ''.join(ch for ch in text if ch not in exclude) |
|
|
|
def lower(text: str)-> str: |
|
'''μλ¬Έμ μ ν''' |
|
return text.lower() |
|
|
|
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) |
|
class ecqa(evaluate.Metric): |
|
"""TODO: Short description of my evaluation module.""" |
|
|
|
def _info(self): |
|
|
|
return evaluate.MetricInfo( |
|
|
|
module_type="metric", |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
inputs_description=_KWARGS_DESCRIPTION, |
|
|
|
features=datasets.Features({ |
|
'predictions': datasets.Value('string'), |
|
'references': datasets.Value('string'), |
|
}), |
|
|
|
homepage="http://module.homepage", |
|
|
|
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], |
|
reference_urls=["http://path.to.reference.url/new_module"] |
|
) |
|
|
|
def _download_and_prepare(self, dl_manager): |
|
"""Optional: download external resources useful to compute the scores""" |
|
|
|
pass |
|
|
|
def __normalize(self, text: str): |
|
text = remove_(text) |
|
text = lower(text) |
|
text = remove_punc(text) |
|
return white_space_fix(text) |
|
|
|
def __compute_f1(self, prediction: str, reference: str)-> tuple[float, float, float]: |
|
predicted_tokens = self.__normalize(prediction).split() |
|
referenced_tokens = self.__normalize(reference).split() |
|
|
|
predictied_chars = [] |
|
for token in predicted_tokens: |
|
predictied_chars += [char for char in token] |
|
|
|
referenced_chars = [] |
|
for token in referenced_tokens: |
|
referenced_chars += [char for char in token] |
|
|
|
true_positive = Counter(predictied_chars) & Counter(referenced_chars) |
|
n_true_positive = sum(true_positive.values()) |
|
if n_true_positive == 0: |
|
return 0, 0, 0 |
|
|
|
precision = 1.0 * n_true_positive / len(predictied_chars) |
|
recall = 1.0 * n_true_positive / len(referenced_chars) |
|
f1 = (2 * precision * recall) / (precision + recall) |
|
|
|
return f1, recall, precision |
|
|
|
def _compute(self, predictions: list[str], references: list[str]): |
|
"""Returns the scores""" |
|
|
|
assert isinstance(predictions, list) |
|
assert isinstance(references, list) |
|
assert len(predictions) == len(references) |
|
|
|
f1_acc = precision_acc = recall_acc = total = 0 |
|
for prediction, reference in tqdm(zip(predictions, references)): |
|
total += 1 |
|
f1_computed, precision_computed, recall_computed = self.__compute_f1(prediction, reference) |
|
|
|
f1_acc += f1_computed |
|
precision_acc += precision_computed |
|
recall_acc += recall_computed |
|
|
|
f1, precision, recall = [ |
|
|
|
100.0 * computed / total |
|
|
|
for computed in [ |
|
f1_acc, |
|
precision_acc, |
|
recall_acc |
|
] |
|
] |
|
|
|
return { |
|
"f1": f1, |
|
"precision": precision, |
|
"recall": recall |
|
} |