|
import streamlit as st |
|
import pandas as pd |
|
import rdkit |
|
import streamlit_ketcher |
|
from streamlit_ketcher import st_ketcher |
|
import run |
|
import screen |
|
|
|
|
|
st.set_page_config(page_title="DeepDAP", page_icon="🔋", layout="wide") |
|
st.title("🔋DeepDAP") |
|
st.subheader('',divider='rainbow') |
|
|
|
|
|
url1= r"https://docs.google.com/spreadsheets/d/1AKkZS04VF3osFT36aNHIb4iUbV8D1uNfsldcpHXogj0/gviz/tq?tqx=out:csv&sheet=dap" |
|
df1 = pd.read_csv(url1, dtype=str, encoding='utf-8') |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.header("🔍**Search papers or molecules**") |
|
text_search = st.text_input(label="_", value="",label_visibility="hidden" ) |
|
m1 = df1["Donor_Name"].str.contains(text_search) |
|
m2 = df1["reference"].str.contains(text_search) |
|
m3 = df1["Acceptor_Name"].str.contains(text_search) |
|
df_search = df1[m1 | m2|m3] |
|
with col2: |
|
st.link_button(":black[📝**DATABASE**]", r"https://docs.google.com/spreadsheets/d/1AKkZS04VF3osFT36aNHIb4iUbV8D1uNfsldcpHXogj0") |
|
st.caption(':black[👆If you want to update the origin database, click the button.]') |
|
if text_search: |
|
st.write(df_search) |
|
st.download_button( "⬇️Download edited files as .csv", df_search.to_csv(), "df_search.csv", use_container_width=True) |
|
edited_df = st.data_editor(df1, num_rows="dynamic") |
|
|
|
st.download_button( |
|
"⬇️ Download edited files as .csv", edited_df.to_csv(), "edited_df.csv", use_container_width=True |
|
) |
|
st.subheader("👇 :red[***Select the type of active layer...***]") |
|
option = st.radio( |
|
"👇 :red[**Select the type of active layer...**]", |
|
[":black[**Donor**]", ":black[**Acceptor**]"], label_visibility="hidden" |
|
) |
|
if option ==":black[**Acceptor**]": |
|
st.subheader("👨🔬**Input the SMILES of Acceptor Molecule**") |
|
molecule = st.text_input("👨🔬**Input the SMILES of Acceptor Molecule**", label_visibility="hidden" ) |
|
acceptor= st_ketcher(molecule ) |
|
st.subheader(f"🏆**New SMILES of edited acceptor molecules**: {acceptor}") |
|
st.subheader(":black[**🧡Input the SMILES of Donor Molecule**]") |
|
donor= st.text_input(":black[**🧡Input the SMILES of Donor Molecule**]", label_visibility="hidden") |
|
if option ==":black[**Donor**]": |
|
st.subheader("👨🔬**Input the SMILES of Donor Molecule**" ) |
|
do= st.text_input("👨🔬**Input the SMILES of Donor Molecule**" , label_visibility="hidden") |
|
donor = st_ketcher(do) |
|
st.subheader(f"🏆**New SMILES of edited donor molecules**: {donor}") |
|
st.subheader(":black[**🧡Input the SMILES of Acceptor Molecule**]") |
|
acceptor = st.text_input(":black[**🧡Input the SMILES of Acceptor Molecule**]", label_visibility="hidden") |
|
try: |
|
pce = run.smiles_aas_test( str(acceptor ), str(donor) ) |
|
st.subheader(f"⚡**PCE**: ``{pce}``") |
|
except: |
|
st.subheader(f"⚡**PCE**: None ") |
|
st.subheader(":black[**🧡Batch screening for high-performance D/A pairs**]") |
|
uploaded_files = st.file_uploader("Choose a CSV file") |
|
st.write( "🎈upload a csv file containing ['donor' ] and ['acceptor']") |
|
if st.button("📑PREDICT"): |
|
if uploaded_files is not None: |
|
text = st.markdown(":red[Predictions are being made... Please wait...]") |
|
st.progress(100, text=None) |
|
x = screen.smiles_aas_test(uploaded_files ) |
|
x = pd.DataFrame(x) |
|
|
|
st.download_button( "⬇️Download the predicted files as .csv", x.to_csv(), "predict results.csv", use_container_width=True) |
|
else: |
|
st.markdown(":red[Please upload the file first!]") |