BiBERTa / app.py
jinysun's picture
Upload 4 files
4ddb141
raw
history blame
3.41 kB
import streamlit as st
import pandas as pd
import rdkit
import streamlit_ketcher
from streamlit_ketcher import st_ketcher
import run
import screen
# Page setup
st.set_page_config(page_title="DeepDAP", page_icon="🔋", layout="wide")
st.title("🔋DeepDAP")
st.subheader('',divider='rainbow')
# Connect to the Google Sheet
url1= r"https://docs.google.com/spreadsheets/d/1AKkZS04VF3osFT36aNHIb4iUbV8D1uNfsldcpHXogj0/gviz/tq?tqx=out:csv&sheet=dap"
df1 = pd.read_csv(url1, dtype=str, encoding='utf-8')
col1, col2 = st.columns(2)
with col1:
st.header("🔍**Search papers or molecules**")
text_search = st.text_input(label="_", value="",label_visibility="hidden" )
m1 = df1["Donor_Name"].str.contains(text_search)
m2 = df1["reference"].str.contains(text_search)
m3 = df1["Acceptor_Name"].str.contains(text_search)
df_search = df1[m1 | m2|m3]
with col2:
st.link_button(":black[📝**DATABASE**]", r"https://docs.google.com/spreadsheets/d/1AKkZS04VF3osFT36aNHIb4iUbV8D1uNfsldcpHXogj0")
st.caption(':black[👆If you want to update the origin database, click the button.]')
if text_search:
st.write(df_search)
st.download_button( "⬇️Download edited files as .csv", df_search.to_csv(), "df_search.csv", use_container_width=True)
edited_df = st.data_editor(df1, num_rows="dynamic")
st.download_button(
"⬇️ Download edited files as .csv", edited_df.to_csv(), "edited_df.csv", use_container_width=True
)
st.subheader("👇 :red[***Select the type of active layer...***]")
option = st.radio(
"👇 :red[**Select the type of active layer...**]",
[":black[**Donor**]", ":black[**Acceptor**]"], label_visibility="hidden"
)
if option ==":black[**Acceptor**]":
st.subheader("👨‍🔬**Input the SMILES of Acceptor Molecule**")
molecule = st.text_input("👨‍🔬**Input the SMILES of Acceptor Molecule**", label_visibility="hidden" )
acceptor= st_ketcher(molecule )
st.subheader(f"🏆**New SMILES of edited acceptor molecules**: {acceptor}")
st.subheader(":black[**🧡Input the SMILES of Donor Molecule**]")
donor= st.text_input(":black[**🧡Input the SMILES of Donor Molecule**]", label_visibility="hidden")
if option ==":black[**Donor**]":
st.subheader("👨‍🔬**Input the SMILES of Donor Molecule**" )
do= st.text_input("👨‍🔬**Input the SMILES of Donor Molecule**" , label_visibility="hidden")
donor = st_ketcher(do)
st.subheader(f"🏆**New SMILES of edited donor molecules**: {donor}")
st.subheader(":black[**🧡Input the SMILES of Acceptor Molecule**]")
acceptor = st.text_input(":black[**🧡Input the SMILES of Acceptor Molecule**]", label_visibility="hidden")
try:
pce = run.smiles_aas_test( str(acceptor ), str(donor) )
st.subheader(f"⚡**PCE**: ``{pce}``")
except:
st.subheader(f"⚡**PCE**: None ")
st.subheader(":black[**🧡Batch screening for high-performance D/A pairs**]")
uploaded_files = st.file_uploader("Choose a CSV file")
st.write( "🎈upload a csv file containing ['donor' ] and ['acceptor']")
if st.button("📑PREDICT"):
if uploaded_files is not None:
text = st.markdown(":red[Predictions are being made... Please wait...]")
st.progress(100, text=None)
x = screen.smiles_aas_test(uploaded_files )
x = pd.DataFrame(x)
st.download_button( "⬇️Download the predicted files as .csv", x.to_csv(), "predict results.csv", use_container_width=True)
else:
st.markdown(":red[Please upload the file first!]")