jiuhai's picture
llama
c4a668c
import torch
import torch.nn as nn
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig, AutoProcessor, AutoModelForCausalLM
class CLIPVisionTower(nn.Module):
def __init__(self, vision_tower, args, delay_load=False):
super().__init__()
self.is_loaded = False
self.vision_tower_name = vision_tower
self.select_layer = args.mm_vision_select_layer
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
if not delay_load:
self.load_model()
elif getattr(args, 'unfreeze_mm_vision_tower', False):
self.load_model()
else:
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
def load_model(self, device_map=None):
if self.is_loaded:
print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name))
return
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map)
self.vision_tower.requires_grad_(False)
self.is_loaded = True
def feature_select(self, image_forward_outs):
image_features = image_forward_outs.hidden_states[self.select_layer]
if self.select_feature == 'patch':
image_features = image_features[:, 1:]
elif self.select_feature == 'cls_patch':
image_features = image_features
else:
raise ValueError(f'Unexpected select feature: {self.select_feature}')
return image_features
@torch.no_grad()
def forward(self, images):
if type(images) is list:
image_features = []
for image in images:
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
image_feature = self.feature_select(image_forward_out).to(image.dtype)
image_features.append(image_feature)
else:
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
image_features = self.feature_select(image_forward_outs).to(images.dtype)
return image_features, image_features
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
return self.vision_tower.dtype
@property
def device(self):
return self.vision_tower.device
@property
def config(self):
if self.is_loaded:
return self.vision_tower.config
else:
return self.cfg_only
@property
def hidden_size(self):
return self.config.hidden_size
@property
def num_patches_per_side(self):
return self.config.image_size // self.config.patch_size
@property
def num_patches(self):
return (self.config.image_size // self.config.patch_size) ** 2
class FlorenceVisionTower(nn.Module):
def __init__(self, vision_tower, args, delay_load=False):
super().__init__()
self.is_loaded = False
self.vision_tower_name = vision_tower
if not delay_load:
self.load_model()
elif getattr(args, 'unfreeze_mm_vision_tower', False):
self.load_model()
else:
self.load_model()
def load_model(self, device_map=None):
if self.is_loaded:
print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name))
return
self.image_processor = AutoProcessor.from_pretrained(self.vision_tower_name, trust_remote_code=True)
self.vision_tower = AutoModelForCausalLM.from_pretrained(self.vision_tower_name, trust_remote_code=True).to(torch.bfloat16)
self.vision_tower.requires_grad_(False)
self.is_loaded = True
@torch.no_grad()
def forward(self, images):
## hard code for the task prompt
# task = [
# 'Describe in detail what is shown in the image.',
# 'What is the text in the image?',
# 'Locate the objects in the image, with their descriptions.',
# 'Locate the region proposals in the image.'
# ]
task_ids = torch.tensor([
[0, 47066, 21700, 11, 4617, 99, 16, 2343, 11, 5, 2274, 4, 2, 1],
[0, 2264, 16, 5, 2788, 11, 5, 2274, 116, 2, 1, 1, 1, 1],
[0, 574, 22486, 5, 8720, 11, 5, 2274, 6, 19, 49, 24173, 4, 2]
]).to(device=self.device)
# task = [
# 'What is the text in the image?',
# 'What is the text in the image, with regions?',
# 'What does the image describe?',
# 'Describe in detail what is shown in the image.',
# 'Describe with a paragraph what is shown in the image.',
# 'Locate the objects with category name in the image.',
# 'Locate the objects in the image, with their descriptions.',
# 'Locate the region proposals in the image.'
# ]
# task_ids = torch.tensor([
# [0, 2264, 16, 5, 2788, 11, 5, 2274, 116, 2, 1, 1, 1, 1],
# [0, 2264, 16, 5, 2788, 11, 5, 2274, 6, 19, 3806, 116, 2, 1],
# [0, 2264, 473, 5, 2274, 6190, 116, 2, 1, 1, 1, 1, 1, 1],
# [0, 47066, 21700, 11, 4617, 99, 16, 2343, 11, 5, 2274, 4, 2, 1],
# [0, 47066, 21700, 19, 10, 17818, 99, 16, 2343, 11, 5, 2274, 4, 2],
# [0, 574, 22486, 5, 8720, 19, 4120, 766, 11, 5, 2274, 4, 2, 1],
# [0, 574, 22486, 5, 8720, 11, 5, 2274, 6, 19, 49, 24173, 4, 2],
# [0, 574, 22486, 5, 976, 5327, 11, 5, 2274, 4, 2, 1, 1, 1]
# ]).to(device=self.device)
with torch.no_grad():
generated_ids, image_feature, encoder_last_hidden_state = self.vision_tower.generate(
input_ids=task_ids,
pixel_values=images,
max_new_tokens=1,
do_sample=False,
num_beams=1,
)
return image_feature, encoder_last_hidden_state
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
return self.vision_tower.dtype
@property
def device(self):
return self.vision_tower.device
@property
def config(self):
if self.is_loaded:
return self.vision_tower.config
else:
return self.cfg_only
@property
def hidden_size(self):
return self.config.hidden_size
@property
def num_patches_per_side(self):
return self.config.image_size // self.config.patch_size
@property
def num_patches(self):
return (self.config.image_size // self.config.patch_size) ** 2