File size: 5,797 Bytes
52890cd 4a92e3f 21ecff7 443bfbe 52890cd 6258d25 21ecff7 52890cd 4a92e3f 52890cd 4a92e3f 443bfbe 52890cd 4a92e3f 52890cd 4a92e3f 52890cd 4a92e3f 52890cd 4a92e3f 52890cd 4e3b7ef d24ebe9 7948fd7 d24ebe9 52890cd 7948fd7 52890cd 4e3b7ef 52890cd 97e83fa 5b0ed96 97e83fa 5b0ed96 97e83fa 5b0ed96 97e83fa 5b0ed96 97e83fa 5b0ed96 97e83fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import gradio as gr
import numpy as np
import random
import torch
import spaces
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU(duration=190)
def infer(prompt, seed=47622, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = prompt,
width = width,
height = height,
num_inference_steps = num_inference_steps,
generator = generator,
guidance_scale=guidance_scale
).images[0]
return image, seed
examples = [
"a cat holding a sign that says hello world",
"A scene full of classic video game characters as stickers on a black water bottle",
"A futuristic biocity that is located in the former site of Portsmouth, New Hampshire. It has a mix of old and new buildings, green spaces, and water features. It also has six large artificial floating islands off of its coastline,(zenithal angle), ((by Iwan Baan)), coastal city,blue sky and white clouds,the sun is shining brightly,ultra-wide angle,",
"Depict a breathtaking scene of a meteor rain showering down from a starry night sky. The meteors should vary in size and brightness, streaking across the sky with vibrant tails of light, creating a dazzling display. Below, a serene landscape—perhaps a tranquil lake reflecting the celestial spectacle, or a rugged mountain range—should enhance the sense of wonder. The foreground can include silhouettes of trees or figures gazing up in awe at the cosmic event. The overall atmosphere should evoke feelings of magic and inspiration, capturing the beauty and mystery of the universe.",
]
css="""
body {
font-family: Arial, sans-serif;
background-color: #f2f2f2;
}
col-container {
margin: 0 auto;
max-width: 520px;
padding: 20px;
background-color: #fff;
border: 1px solid #ddd;
border-radius: 10px;
box-shadow: 0 0 10px rgba(0,0,0,0.1);
}
.gr-markdown {
font-size: 16px;
color: #333;
}
.gr-input {
padding: 10px;
border: 1px solid #ccc;
border-radius: 5px;
}
.gr-slider {
width: 100%;
padding: 10px;
}
.gr-button {
background-color: #4CAF50;
color: #fff;
padding: 10px 20px;
border: none;
border-radius: 5px;
cursor: pointer;
}
.gr-button:hover {
background-color: #3e8e41;
}
.gr-accordion {
background-color: #f2f2f2;
border: 1px solid #ddd;
border-radius: 10px;
padding: 10px;
}
.gr-accordion label {
font-weight: bold;
margin-bottom: 10px;
}
.gr-examples {
padding: 10px;
background-color: #f2f2f2;
border: 1px solid #ddd;
border-radius: 10px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
Generate an image with Flux. Try it out and let me know what you think!
Expect roughly 45-60 seconds per generation with it's current backend.
This can be scaled up over time as needed. Thanks!
Not for Commercial Use - Apache 2.0 License
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
demo.launch() |