Spaces:
Sleeping
Sleeping
import torch | |
from torch import nn | |
class ResNet18(nn.Module): | |
def __init__(self, in_channels: int, num_classes: int): | |
super().__init__() | |
self.initial_conv = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=64, | |
kernel_size=7, | |
stride=2, | |
padding=3, | |
bias=False, | |
) | |
self.bn = nn.BatchNorm2d(64) | |
self.relu = nn.ReLU(inplace=True) | |
self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = nn.Sequential(BasicBlock(64, 64), BasicBlock(64, 64)) | |
self.layer2 = nn.Sequential( | |
BasicBlock(64, 128, stride=2, downsample=self._downsample(64, 128)), | |
BasicBlock(128, 128), | |
) | |
self.layer3 = nn.Sequential( | |
BasicBlock(128, 256, stride=2, downsample=self._downsample(128, 256)), | |
BasicBlock(256, 256), | |
) | |
self.layer4 = nn.Sequential( | |
BasicBlock(256, 512, stride=2, downsample=self._downsample(256, 512)), | |
BasicBlock(512, 512), | |
) | |
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.drop = nn.Dropout(0.15) | |
self.flatten = nn.Flatten(1) | |
self.fc = nn.Linear(512, num_classes) | |
def _downsample(in_channels: int, out_channels: int) -> nn.Sequential: | |
return nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=2, bias=False), | |
nn.BatchNorm2d(out_channels), | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.initial_conv(x) | |
x = self.bn(x) | |
x = self.relu(x) | |
x = self.max_pool(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
x = self.avg_pool(x) | |
x = self.drop(x) # because linear layers tends to overfit more | |
x = self.flatten(x) | |
x = self.fc(x) | |
return x | |
class BasicBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
stride: int = 1, | |
downsample: nn.Module = None, | |
): | |
super().__init__() | |
self.downsample = downsample | |
self.conv1 = nn.Conv2d( | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=stride, | |
padding=1, | |
bias=False, | |
) | |
self.bn1 = nn.BatchNorm2d(out_channels) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = nn.Conv2d( | |
out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False | |
) | |
self.bn2 = nn.BatchNorm2d(out_channels) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
identity = x | |
output = self.conv1(x) | |
output = self.bn1(output) | |
output = self.relu(output) | |
output = self.conv2(output) | |
output = self.bn2(output) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
output += identity | |
output = self.relu(output) | |
return output | |