fer-demo-1 / data_filtering.py
jlynxdev's picture
Upload 13 files
b066d77 verified
raw
history blame
11.5 kB
import os
from pathlib import Path
import cv2
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
import imagehash
from typing import Callable
from datetime import datetime as dt
from abc import ABC, abstractmethod
_DATASET_AVG_MEAN = 129.38489987766278
_DATASET_AVG_STD = 54.084109207654805
def save_to_file(location: str = './extracted_paths.txt') -> Callable:
def outer_wrapper(fn: Callable) -> Callable:
def inner_wrapper(*args, **kwargs):
paths: list[str] = fn(*args, **kwargs)
if kwargs.get('to_file'):
with open(location, 'a') as file:
file.write('\nFiles to remove [TIMESTAMP {}]:\n'.format(dt.now().strftime('%Y%m%d%H%M%S')))
for p in paths:
file.write(f'{p}\n')
return paths
return inner_wrapper
return outer_wrapper
def visualize(show_limit: int = -1) -> Callable:
def outer_wrapper(fn: Callable) -> Callable:
def inner_wrapper(*args, **kwargs):
paths: list[str] = fn(*args, **kwargs)
if kwargs.get('visualize_'):
if show_limit != -1:
paths = paths[:show_limit]
num_cols = 8
num_rows = len(paths) // num_cols + 1
fig = plt.figure(figsize=(8, 8))
for i, path in enumerate(paths, start=1):
plt.subplot(num_rows, num_cols, i)
plt.imshow(Image.open(path), cmap='gray')
plt.title(f'{Path(path).parent.name}', fontsize=7)
plt.axis('off')
fig.tight_layout()
plt.tight_layout()
fig.subplots_adjust(hspace=0.6, top=0.97)
plt.show()
return paths
return inner_wrapper
return outer_wrapper
class DataFilter(ABC):
def __init__(self):
self.paths = []
@abstractmethod
def extract(self, data_dir: str | Path, visualize_: bool, to_file: bool) -> list[str]:
pass
@abstractmethod
def clear(self) -> None:
pass
@abstractmethod
def filter(self) -> bool:
pass
@staticmethod
def _load_data(dir_: str) -> tuple[list[np.ndarray], list[str], list[str]]:
images = []
class_names = []
paths = []
for path in Path(dir_).glob('**/*.jpg'):
label = path.parent.name
image = cv2.imread(str(path), cv2.IMREAD_GRAYSCALE)
if image is not None and label is not None:
images.append(np.array(image))
class_names.append(label)
paths.append(str(path))
return images, class_names, paths
class DataFilterCompose(DataFilter):
def __init__(self, components: list[DataFilter]):
super().__init__()
self.components = components
@staticmethod
def build(components: list[DataFilter]) -> DataFilter:
return DataFilterCompose(components)
def extract(self, data_dir: str | Path, visualize_: bool, to_file: bool) -> list[str]:
extracted_paths = []
for component in self.components:
cur_extracted_paths = component.extract(data_dir,
visualize_=visualize_,
to_file=to_file)
extracted_paths += cur_extracted_paths
self.paths += extracted_paths
return extracted_paths
def clear(self) -> None:
for component in self.components:
component.clear()
def filter(self):
for component in self.components:
component.filter()
def add_component(self, component: DataFilter, position: int) -> None:
self.components.insert(position, component)
def rm_component(self, position: int) -> None:
self.components.pop(position)
class StatsDataFilter(DataFilter):
_OPTIM_MEAN_THRESH = 107
_OPTIM_STD_THRESH = 51
def __init__(self, data_avg_mean: float = None, data_avg_std: float = None, console_output: bool = False):
super().__init__()
self.data_avg_mean = data_avg_mean
self.data_avg_std = data_avg_std
self.console_output = console_output
@visualize()
@save_to_file()
def extract(self, data_dir: str | Path, visualize_: bool, to_file: bool) -> list[str]:
if self.data_avg_mean is None or self.data_avg_std is None:
stats = self._compute_dataset_stats(data_dir)
self.data_avg_mean = stats['avg_mean']
self.data_avg_std = stats['avg_std']
extracted_paths = self._extract_outliers_by_stats(
data_dir,
self.data_avg_mean,
self.data_avg_std,
StatsDataFilter._OPTIM_MEAN_THRESH,
StatsDataFilter._OPTIM_STD_THRESH,
self.console_output)
self.paths += extracted_paths
return extracted_paths
def clear(self) -> None:
self.paths.clear()
if self.console_output:
print(f'[{self.__class__.__name__}]: Paths memory cleared.')
def filter(self) -> bool:
has_error = False
for path in self.paths:
if not Path(path).exists():
has_error = True
continue
os.remove(path)
if self.console_output:
print(f'[{self.__class__.__name__}]: Removed {path}')
return has_error
@classmethod
def _extract_outliers_by_stats(cls,
data_root: str | Path,
dataset_avg_mean: float,
dataset_avg_std: float,
mean_thresh: float,
std_thresh: float,
console_output: bool = False) -> list[str]:
outlier_paths = []
count = 0
_, _, paths = StatsDataFilter._load_data(data_root)
total_len = len(paths)
for path in iter(paths):
img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
if abs(dataset_avg_mean - np.mean(img)) > mean_thresh or abs(
dataset_avg_std - np.std(img)) > std_thresh:
outlier_paths.append(path)
if console_output:
count += 1
print(f'[{cls.__name__}]: Computed {count}/{total_len} images ({count / total_len * 100:.2f}%)')
return outlier_paths
@staticmethod
def _compute_dataset_stats(data_dir: str) -> dict[str, float]:
img_paths = list(Path(data_dir).glob('**/*.jpg'))
num_images = len(img_paths)
mean_sum = 0
std_sum = 0
for img_path in img_paths:
img = cv2.imread(str(img_path), cv2.IMREAD_GRAYSCALE)
img_mean = np.mean(img)
img_std = np.std(img)
mean_sum += img_mean
std_sum += img_std
avg_mean = mean_sum / num_images
avg_std = std_sum / num_images
stats_dict = {
'avg_mean': avg_mean,
'avg_std': avg_std,
}
return stats_dict
class PcaDataFilter(DataFilter):
_OPTIM_NUM_COMPONENTS = 4
_OPTIM_ERROR_THRESH = 87
def __init__(self, console_output: bool = False):
super().__init__()
self.console_output = console_output
@visualize()
@save_to_file()
def extract(self, data_dir: str | Path, visualize_: bool, to_file: bool) -> list[str]:
extracted_paths = self._extract_outliers_with_pca(data_dir)
self.paths += extracted_paths
return extracted_paths
def clear(self) -> None:
self.paths.clear()
if self.console_output:
print(f'[{self.__class__.__name__}]: Paths memory cleared.')
def filter(self) -> bool:
has_error = False
for path in self.paths:
if not Path(path).exists():
has_error = True
continue
os.remove(path)
if self.console_output:
print(f'[{self.__class__.__name__}]: Removed {path}')
return has_error
@staticmethod
def _extract_outliers_with_pca(dir_: str | Path) -> list[str]:
x, _, img_paths = PcaDataFilter._load_data(dir_)
x = np.array(x)
num_samples, height, width = x.shape
X_flattened = x.reshape(num_samples, height * width)
outlier_indices = PcaDataFilter._detect_outliers_with_pca(X_flattened,
PcaDataFilter._OPTIM_NUM_COMPONENTS,
PcaDataFilter._OPTIM_ERROR_THRESH)
img_paths_to_remove = [img_paths[i] for i in outlier_indices.tolist()]
return img_paths_to_remove
@staticmethod
def _detect_outliers_with_pca(orig_data: np.ndarray,
num_components: int,
error_thresh: float) -> np.ndarray:
pca = PCA(n_components=num_components)
X_reduced = pca.fit_transform(orig_data)
X_reconstructed = pca.inverse_transform(X_reduced)
reconstruction_errors = np.sqrt(np.mean((orig_data - X_reconstructed) ** 2, axis=1))
outlier_indices = np.where(reconstruction_errors > error_thresh)[0]
return outlier_indices
class DHashDuplicateFilter(DataFilter):
def __init__(self, hash_size: int = 8, console_output: bool = False):
super().__init__()
self.hash_size = hash_size
self.console_output = console_output
@visualize(60)
@save_to_file()
def extract(self, data_dir: str | Path, visualize_: bool, to_file: bool) -> list[str]:
_, _, paths = self._load_data(data_dir)
hashes = set()
duplicates = []
for path in paths:
hash_ = imagehash.dhash(Image.open(path), self.hash_size)
if hash_ in hashes:
duplicates.append(path)
if self.console_output:
print(f'[{self.__class__.__name__}]: Duplicate found at {path}')
else:
hashes.add(hash_)
self.paths += duplicates
return duplicates
def clear(self) -> None:
self.paths.clear()
if self.console_output:
print(f'[{self.__class__.__name__}]: Paths memory cleared.')
def filter(self) -> bool:
has_error = False
for path in self.paths:
if not Path(path).exists():
has_error = True
continue
os.remove(path)
if self.console_output:
print(f'[{self.__class__.__name__}]: Removed {path}')
return has_error
if __name__ == '__main__':
dataset_dir = Path('./dataset')
stats_filter = StatsDataFilter(_DATASET_AVG_MEAN, _DATASET_AVG_STD, True)
pca_filter = PcaDataFilter(console_output=True)
duplicate_filter = DHashDuplicateFilter(console_output=True)
compose = DataFilterCompose.build([
stats_filter,
pca_filter,
duplicate_filter
])
# You may set the value of visualize_ or to_file parameters to True
# to plot extracted images or save paths to a file.
stats_filter.extract(dataset_dir, visualize_=False, to_file=False)
# WARNING: uncommenting the line below will irreversibly remove dataset files
# compose.filter()