Spaces:
Runtime error
Runtime error
import numpy as np | |
import pandas as pd | |
from scipy.stats import multivariate_normal | |
import matplotlib.pyplot as plt | |
from mpl_toolkits.mplot3d import Axes3D | |
import aaaaa | |
# checked; it is ok | |
# To generate distorsed covariance matrixes | |
def genS(sds, R, distor=1): | |
# sds: standard deviations | |
# R: correlation matrix | |
# distor: level of distorsion | |
sdsdis = sds * distor | |
S = R * np.outer(sdsdis, sdsdis) | |
np.fill_diagonal(S, sdsdis ** 2) | |
return S | |
original_data_path = "/home/scpmaotj/Github/hcr/reference_data/" | |
synthetic_data_path = "/home/scpmaotj/Github/hcr/synthetic_data/" | |
plots_path = "/home/scpmaotj/Github/hcr/plots/" | |
nkey = 21 | |
#Nivel distorsion | |
# 1 - Distorsionamos las desviaciones sin distorsionar la estructura de correlacion | |
# Funcion genS() | |
d = [1, 1.01, 1.05, 1.1, 1.2, 1.5, 1.7, 2] | |
# 2 - Distorsionamos las desviaciones y la estrucctura de correlacion | |
# Funcion??? | |
# Intento sacar una mano al azar de una normal multivariante. | |
# Sacaremos m=100 observaciones | |
m = 100 | |
#gesto <- 1 | |
#for gesto in range(1, 43): | |
for gesto in range(1, 2): | |
print(gesto) | |
datXYZ = aaaaa.get_datXYZ(gesto, original_data_path) | |
# Hacemos un grafico con ndib= 16 lecturas, no las 16 primeras sino desplazadas pos=4 posiciones | |
ndib = 16 | |
pos = 4 | |
hands = datXYZ[pos:pos+ndib].reshape(ndib, nkey, 3) | |
fig, axes = plt.subplots(4, 4, subplot_kw={'projection': '3d'}) | |
for i, ax in enumerate(axes.flat): | |
ax.scatter(hands[i, :, 0], hands[i, :, 1], hands[i, :, 2], c='b', marker='o') | |
ax.set_title(f"Original {i+pos}") | |
plt.savefig(plots_path + f"{gesto}orig.pdf") | |
plt.close() | |
obsmean = np.mean(datXYZ, axis=0) | |
obssd = np.std(datXYZ, axis=0) | |
R = np.corrcoef(datXYZ, rowvar=False) | |
id = len(d) | |
np.random.seed(3663) | |
for i in range(id): | |
Sberria = genS(obssd, R, distor=d[i]) | |
z = multivariate_normal.rvs(mean=obsmean, cov=Sberria, size=m) | |
np.savetxt(synthetic_data_path + f"gesto{gesto}d{i-1}.csv", z, delimiter=',', fmt='%.6f') | |
simhands = z[pos:pos+ndib].reshape(ndib, nkey, 3).transpose(0, 2, 1) | |
fig, axes = plt.subplots(4, 4, subplot_kw={'projection': '3d'}) | |
for j, ax in enumerate(axes.flat): | |
ax.scatter(simhands[j, 0, :], simhands[j, 1, :], simhands[j, 2, :], c='b', marker='o') | |
ax.set_title(f"Simulated, d={i-1}, It. {j+4}") | |
plt.savefig(plots_path + f"gesto{gesto}_3coord_d{i-1}.pdf") | |
plt.close() | |
# Selecciono un gesto, y miro algunas configuraciones simuladas segun grado de distorsion | |
gesto = 4 | |
gd = 0 | |
mirar = synthetic_data_path + f"gesto{gesto}d{gd}.csv" | |
z = np.loadtxt(mirar, delimiter=',') | |
m = z.shape[0] | |
simhands = np.zeros((nkey, 3, m)) | |
for i in range(m): | |
simhands[:, :, i] = z[i].reshape(nkey, 3) | |
simhands = simhands.transpose(2, 0, 1) | |
simhands = np.swapaxes(simhands, 1, 2) | |
fig, axes = plt.subplots(4, 4, subplot_kw={'projection': '3d'}) | |
for i, ax in enumerate(axes.flat): | |
ax.scatter(simhands[i, 0, :], simhands[i, 1, :], simhands[i, 2, :], c='b', marker='o') | |
ax.set_title(str(i+1)) | |
plt.show() | |