File size: 3,319 Bytes
ccbbbf4
 
 
 
b5a2ee4
e4a6674
 
b5a2ee4
 
3161b19
 
b5a2ee4
 
ccbbbf4
e4a6674
 
 
 
05856c6
e4a6674
 
ccbbbf4
 
b5a2ee4
 
 
 
 
 
 
 
 
 
 
e4a6674
 
ccbbbf4
 
 
 
 
 
 
 
 
 
93390f1
ccbbbf4
e4a6674
93390f1
e4a6674
 
5272af9
 
 
e4a6674
b5a2ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c20d21c
 
 
 
 
 
e4a6674
5272af9
b5a2ee4
ccbbbf4
 
 
b64e350
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
os.system("pip install git+https://github.com/openai/whisper.git")
import gradio as gr
import whisper
from huggingface_hub import from_pretrained_keras
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
from sklearn.preprocessing import StandardScaler
import logging
import librosa
import numpy as np
import pickle



#call tokenizer and NLP model for text classification
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
model_nlp = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")


# call whisper model for audio/speech processing
model = whisper.load_model("small")

# call model for audio emotions
reloaded_model = from_pretrained_keras('jmparejaz/RAVDESS-CREMAD_AudioEmotionClassifier')

# call scaler and decoder
with open("scaler.pkl", "rb") as f:
    scaler = pickle.load(f)

with open("encoder.pkl", "rb") as f:
    encoder = pickle.load(f)



def inference_audio(audio):
    audio = whisper.load_audio(audio)
    audio = whisper.pad_or_trim(audio)
    
    mel = whisper.log_mel_spectrogram(audio).to(model.device)
    
    _, probs = model.detect_language(mel)
    
    options = whisper.DecodingOptions(fp16 = False)
    result = whisper.decode(model, mel, options)
    
    return result.text

def inference_text(audio):
    text =inference_audio(audio)

    sentiment_task = pipeline("sentiment-analysis", model=model_nlp, tokenizer=tokenizer)
    res=sentiment_task(text)[0]

    return res['label'],res['score']

    
def extract_features(data):
    # ZCR
    result = np.array([])
    zcr = np.mean(librosa.feature.zero_crossing_rate(y=data).T, axis=0)
    result=np.hstack((result, zcr)) # stacking horizontally

    # Chroma_stft
    stft = np.abs(librosa.stft(data))
    chroma_stft = np.mean(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T, axis=0)
    result = np.hstack((result, chroma_stft)) # stacking horizontally

    # MFCC
    mfcc = np.mean(librosa.feature.mfcc(y=data, sr=sample_rate).T, axis=0)
    result = np.hstack((result, mfcc)) # stacking horizontally

    # Root Mean Square Value
    rms = np.mean(librosa.feature.rms(y=data).T, axis=0)
    result = np.hstack((result, rms)) # stacking horizontally

    # MelSpectogram
    mel = np.mean(librosa.feature.melspectrogram(y=data, sr=sample_rate).T, axis=0)
    result = np.hstack((result, mel)) # stacking horizontally
    
    return result

def audio_emotions(audio):
    data = audio.flatten()
    sr=22050
    features_audio = extract_features(data)
    features_audio = np.array(features_audio)
    scaled_features=scaler.transform(features_audio)
    scaled_features = np.expand_dims(scaled_features, axis=2)
    prediction=reloaded_model.predict(scaled_features)
    y_pred = encoder.inverse_transform(prediction)
    return y_pred

def main(audio):
    r1,r2=inference_text(audio)
    r3=audio_emotions(audio)
    return r1,r2,r3
    

audio = gr.Audio(
                    label="Input Audio",
                    show_label=False,
                    source="microphone",
                    type="filepath"
                )


app=gr.Interface(title="Sentiment Audio Analysis",fn=main,inputs=[audio], outputs=["text","text","text"])



app.launch()