Spaces:
Runtime error
Runtime error
File size: 1,477 Bytes
305ba48 61f8b0e 305ba48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import torch
import gradio as gr
from transformers import pipeline
from typing import Dict
def food_not_food_classifier(text: str) -> Dict[str, float]:
# Create the classifier pipeline
food_not_food_classifier_pipeline = pipeline(
task="text-classification",
model="joadithya/learn_hf_food_not_food_text_classifier-distilbert-base-uncased",
batch_size=32,
device="cuda" if torch.cuda.is_available() else "cpu",
top_k=None # Returning all possible labels for a given input
)
# Get the outputs from the pipeline
outputs = food_not_food_classifier_pipeline(text)[0]
# Format output for Gradio
output_dict = {}
for item in outputs:
output_dict[item["label"]] = item["score"]
return output_dict
description = """
A text classifier model to determine whether a caption is about food or not food.
Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) on a [small dataset of food and not food captions](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions)
"""
demo = gr.Interface(
fn=food_not_food_classifier,
inputs="text",
outputs=gr.Label(num_top_classes=2),
title="Food Caption Classifier",
description=description,
examples=[["Nothing beats the taste of home"],
["Love served on a plate"],
["A toast with cherry on top"]]
)
if __name__ == "__main__":
demo.launch()
|