Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from transformers import pipeline | |
from typing import Dict | |
def food_not_food_classifier(text: str) -> Dict[str, float]: | |
# Create the classifier pipeline | |
food_not_food_classifier_pipeline = pipeline( | |
task="text-classification", | |
model="joadithya/learn_hf_food_not_food_text_classifier-distilbert-base-uncased", | |
batch_size=32, | |
device="cuda" if torch.cuda.is_available() else "cpu", | |
top_k=None # Returning all possible labels for a given input | |
) | |
# Get the outputs from the pipeline | |
outputs = food_not_food_classifier_pipeline(text)[0] | |
# Format output for Gradio | |
output_dict = {} | |
for item in outputs: | |
output_dict[item["label"]] = item["score"] | |
return output_dict | |
description = """ | |
A text classifier model to determine whether a caption is about food or not food. | |
Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) on a [small dataset of food and not food captions](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions) | |
""" | |
demo = gr.Interface( | |
fn=food_not_food_classifier, | |
inputs="text", | |
outputs=gr.Label(num_top_classes=2), | |
title="Food Caption Classifier", | |
description=description, | |
examples=[["Nothing beats the taste of home"], | |
["Love served on a plate"], | |
["A toast with cherry on top"]] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |