Spaces:
Sleeping
Sleeping
import gradio as gr | |
import joblib | |
import numpy as np | |
# Carregar o modelo serializado | |
model = joblib.load("tiebreak_model.pkl") | |
# Função para realizar a previsão | |
def predict_tiebreak(win_odds, loser_odds): | |
# Calculando as features | |
odds_ratio = win_odds / loser_odds | |
log_odds_w = np.log(win_odds) | |
log_odds_l = np.log(loser_odds) | |
prob_w = 1 / win_odds | |
prob_l = 1 / loser_odds | |
odds_spread = abs(loser_odds - win_odds) | |
# Criando o vetor de features para o modelo | |
features = np.array([[odds_ratio, log_odds_w, log_odds_l, prob_w, prob_l, odds_spread]]) | |
# Realizando a previsão | |
prob = model.predict_proba(features)[0, 1] # Probabilidade da classe 1 (menos de 1.5 tiebreaks) | |
# Calculando a odds mínima | |
odds_minima = 1 / prob | |
# Retornando os valores arredondados | |
return round(prob, 2), round(odds_minima, 2) | |
# Interface Gradio | |
inputs = [gr.inputs.Number(label="Win Odds"), gr.inputs.Number(label="Loser Odds")] | |
outputs = [gr.outputs.Textbox(label="Probabilidade de menos de 1.5 Tiebreaks"), gr.outputs.Textbox(label="Odds Mínima")] | |
# Criação da interface | |
gr.Interface(fn=predict_tiebreak, inputs=inputs, outputs=outputs, title="Previsão de Tiebreaks", | |
description="Insira as odds de vitória e derrota para prever a probabilidade de haver menos de 1.5 tiebreaks e calcular as odds mínimas.").launch() | |