Spaces:
Paused
Paused
File size: 2,884 Bytes
7e0b3c1 b1c5080 7e0b3c1 2be8ca9 7e0b3c1 64e1afa 74011b4 2be8ca9 a823283 7e0b3c1 2be8ca9 74011b4 2be8ca9 74011b4 2be8ca9 7e0b3c1 2be8ca9 74011b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import numpy as np
import streamlit as st
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
# Random dog images for error messages
random_dog = [
"0f476473-2d8b-415e-b944-483768418a95.jpg",
"1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
]
def reset_conversation():
'''Resets conversation'''
st.session_state.conversation = []
st.session_state.messages = []
return None
# Sidebar controls
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)
max_token_value = st.sidebar.slider('Select a max_token value', 1000, 9000, 5000)
st.sidebar.button('Reset Chat', on_click=reset_conversation)
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Set cache directory path to /data
cache_dir = "/data"
# Load model and tokenizer on-demand to save memory
if prompt := st.chat_input(f"مرحبا انا سبيدي , كيف استطيع مساعدتك ؟"):
with st.chat_message("user"):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
try:
# Load the tokenizer and model with specific configuration
tokenizer = AutoTokenizer.from_pretrained(
"joermd/llma-speedy",
cache_dir=cache_dir,
local_files_only=False # السماح بتحميل الملفات المتوفرة فقط
)
model = AutoModelForCausalLM.from_pretrained(
"joermd/llma-speedy",
cache_dir=cache_dir,
local_files_only=False, # السماح بتحميل الملفات المتوفرة فقط
ignore_missing_weights=True # تجاهل الأوزان المفقودة
)
# Generate response
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
inputs.input_ids,
max_new_tokens=max_token_value,
temperature=temp_values,
do_sample=True
)
assistant_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Clear memory
if torch.cuda.is_available():
torch.cuda.empty_cache()
del model
except Exception as e:
assistant_response = "😵💫 Connection issue! Try again later. Here's a 🐶:"
st.image(f'https://random.dog/{random_dog[np.random.randint(len(random_dog))]}')
st.write("Error message:")
st.write(e)
# Display assistant response
with st.chat_message("assistant"):
st.markdown(assistant_response)
st.session_state.messages.append({"role": "assistant", "content": assistant_response}) |