|
|
|
from flask import Flask, send_file, request, jsonify |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
from functools import lru_cache |
|
import os |
|
|
|
app = Flask(__name__) |
|
|
|
@lru_cache(maxsize=1) |
|
def load_model(): |
|
"""Load model and tokenizer with caching""" |
|
tokenizer = AutoTokenizer.from_pretrained("amd/AMD-OLMo-1B") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"amd/AMD-OLMo-1B", |
|
torch_dtype=torch.float16, |
|
device_map="auto" |
|
) |
|
return model, tokenizer |
|
|
|
def generate_response(prompt, model, tokenizer): |
|
"""Generate response from the model""" |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
**inputs, |
|
max_length=200, |
|
num_return_sequences=1, |
|
temperature=0.7, |
|
top_p=0.9, |
|
repetition_penalty=1.2, |
|
pad_token_id=tokenizer.eos_token_id |
|
) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return response.replace(prompt, "").strip() |
|
|
|
@app.route('/') |
|
def home(): |
|
return send_file('index.html') |
|
|
|
@app.route('/message', methods=['POST']) |
|
def message(): |
|
try: |
|
data = request.json |
|
user_message = data.get('message', '') |
|
|
|
if not user_message: |
|
return jsonify({"response": "عذراً، لم أفهم رسالتك"}) |
|
|
|
model, tokenizer = load_model() |
|
response = generate_response(user_message, model, tokenizer) |
|
|
|
return jsonify({"response": response}) |
|
|
|
except Exception as e: |
|
return jsonify({"response": f"عذراً، حدث خطأ: {str(e)}"}) |
|
|
|
if __name__ == '__main__': |
|
app.run(debug=True) |